关于高性能的那点事 - 双调

标签: 性能 | 发表时间:2014-10-20 00:49 | 作者:双调
出处:

        园子里面很多关于高性能,大并发,还有什么日pv百万的架构搭建。其实真心真心很扯淡。对于大部分应用来说,想要高性能,主要是要做到尽可能的减少网络请求(含db、redis、mongo、mq等)。几乎所有的应用,性能瓶颈永远是在带宽那里,硬件方面这里就不提了,说说我们能做的事。

        找了半天没有找到那张图,关于各个组件到cpu的时间周期,我用文字描述一下,L1>L2>memory>disk>internet。

        有人说redis性能高,做大并发,大数据访问必须要用,有人说mongo性能高,什么zeromq等等一系列的,其实都是渣。

 

        先说网络请求,关于tcp/ip:

        大家都知道ip是逐跳协议,也就是说我只能从一个路由器,到下一个路由器,再到下一个路由器,如果你的电脑到服务器,中途要经过很多个路由器,那时间周期就会长很多很多恨多。为什么要做cdn、p2p等也是这个考虑,缩短网络的路径(降低带宽承载也是一方面)。

        再说redis、mongo:

        举个简单的例子,我有一个游戏服务器,在线人数约4000,里面是一个状态机在跑,需要不断的去检测各种状态,经验,星座,任务开放,技能开放等等。一个玩家大约10个状态的判定,4000个玩家必须在200ms之内检测完毕,不然延迟会很严重,那1s就是大约执行5次,如果每一次数据都去redis去取,大约是5*10*4000 = 200k次,别说redis,怎样的牛B的服务器都顶不住,这还是只有1个服。

        那么问题来了:怎么解决呢?

        把数据放在内存里面,直接从内存取,然后foreach。大部分的应用优化到这里,基本上应付所谓的日pv百万,就不是什么问题了。

       

        到了这一步,那么问题来了,对于内部应用,比如分布式文件存储,数据分析,任务调度。肿么破?

        对于大数据,其实一直是一个伪命题,数据量太大属于硬伤。所有的做大数据处理的,都是把数据分成小数据,然后分块来处理,最后再合并。其实从mysql,oracle,mssql等一系列rmdb的分区,分库上的处理就可以看出来。想要提高性能,必须要做到,每个模块处理的数据量,都是细分到了一定粒度的。这个时候index, group, hash等的重要性,在这里就体现出来了。

        举个简单的例子:我有一个业务系统,每天的日志大约是10个G,一个月就大约是300g,一季度大约1T,我需要看每小时/每天/每周/每月/每季度的各种报表,每次都去数T里面去找,肯定是不可能的。

        那么问题来了:怎么解决呢?

        按业务分析每分钟的数据,10g/24/60大约7M,然后生成一个分析后的结果文件,大约几k,1小时就是60个文件,需要查看每小时的数据,则将60个文件的结果合并。具体粒度可按具体业务定制,这个是比较简单的分组的例子。

        那我需要查看某一个用户,最近10天来的所有操作/订单,那原分组方式,已经无法满足,这个时候怎么办呢?

        在插入用户数据的时候,可以按照一定规则,比如用户编号的后两位取摸,去存储在某一个文件里面,10g的数据,则可以相对平均的分配到100个文件里面去,需要查看某用户时,则可以针对用户编号取摸,直接定位到那个文件,然后再去里面查询数据。这个是比较简单的gourp+index。这一块想明白以后,你就可以在这个基础上面,写个定制化的简单的fs了(当然了,实际情况需要考虑的会更多,包括内存换入换出等,不在本文列举)。

 

        经常听到有人说,多线程的程序还不如单线程的程序性能高。那如何编写一个能合理利用cpu资源的多线程程序?

        大家都知道,线程切换是需要额外的开销,所以在编写多线程程序的时候,就需要尽可能的避免共享式资源,这样就可以在保证数据一致性的同时,而又避开线程等待的时间。

        举个简单的例子:

        我有个大的字典(Dictionary/Map)存放用户的会话数据,每个线程,去这个字典里面去读/写数据的时候,都需要去上锁,才能保证数据的一致性,如果两个(更多)线程同时去读/写数据,其他的线程就需要去等待当前线程释放资源,线程越多,则等待的几率越大,性能则越差,多线程处理变成了单线程处理,且等待完了以后,能否再切换回来这个线程继续执行,又是另外一个开销,这一部分属于系统拖托管,属于不可控的。

        那么问题来了:怎么解决呢?

        根据硬件和实际测试数据,合理分配线程资源,比如,我初始化了8个线程,每个用户的请求,对于线程总数取摸,保证每个用户的请求,入同一个线程处理,则可以在每个线程内部,存放这些用户数据,每个线程在自己内部进行存取,避开了lock,也避开了线程等待/切换带来的资源开销。不取模,随机分配线程,然后用一个hash表来存放,也可。让每个线程,专注于做自己的事情,任务调度作业,也大是基于这个处理。把线程处理机制,放大到虚拟机/物理机之间的消息分发,也大是如此。

        还有很多很多,不一一列举,具体业务,视具体情况而定。

        总体来说,避开网络开销,避开海量数据,避开资源争夺 是所有高性能的几个基本要素。


本文链接: 关于高性能的那点事,转载请注明。

相关 [性能] 推荐:

MySQL 性能

- - 谁主沉浮
这里罗列了一些基本的 MySQL 性能提示,但不是放之四海而皆准,需要根据实际的应用情况而决定. 使用标准化设计(数据库三范式),记住表的联合查询(join)性能不会差. 选择合适的字符集,虽然UTF16无所不能,但需要两倍的存储;UTF8适合各种字符,但比latin1慢,尽可能选用latin1(此条不适合中文).

性能监控

- - 互联网 - ITeye博客
一旦你的服务器是在控制台模式下运行,你就可以开始我们接下来的内容. iostat  iostat 命令用来显示存储子系统的详细信息,通常用它来监控磁盘 I/O 的情况. 要特别注意 iostat 统计结果中的 %iowait 值,太大了表明你的系统存储子系统性能低下. meminfo 和 free  Meminfo 可让你获取内存的详细信息,你可以使用 cat 和 grep 命令来显示 meminfo 信息: 1 cat /proc/meminfo  另外你可以使用 free 命令来显示动态的内存使用信息,free 只是给你大概的内存信息,而 meminfo 提供的信息更加详细.

高性能mysql 之 性能剖析

- - 数据库 - ITeye博客
1 定义性能优化 mysql服务器性能,此处定义为 响应时间. 在解释性能优化之前,先来消除一个误解,很多人认为,性能优化就是降低cpu的利用率或者减少对资源的使用. 资源时用来消耗并用来工作的,所以有时候消耗更多的资源能够加快查询速度,保持cpu忙绿,这是必要的. 很多时候发现 编译进了新版本的InnoDB之后,cpu利用率上升的很厉害,这并不代表性能出现了问题.

MySQL性能优化

- sun - IT程序员面试网
在笔试面试中,尤其是像百度,淘宝这些数据量非常大,而且用LAMP架构的公司,数据库优化方面就显得特别重要了. 此外,除了数据库索引之外,在LAMP结果如此流行的今天,数据库(尤其是MySQL)性能优化也是海量数据处理的一个热点. 下面就结合自己的经验,聊一聊MySQL数据库优化的几个方面. 首先,在数据库设计的时候,要能够充分的利用索引带来的性能提升,至于如何建立索引,建立什么样的索引,在哪些字段上建立索引,上面已经讲的很清楚了,这里不在赘述.

HBase性能调优

- - 学着站在巨人的肩膀上
我们经常看到一些文章吹嘘某产品如何如何快,如何如何强,而自己测试时却不如描述的一些数据. 其实原因可能在于你还不是真正理解其内部结构,对于其性能调优方法不够了解. 本文转自TaoBao的Ken Wu同学的博客,是目前看到比较完整的HBase调优文章. 原文链接:HBase性能调优. 因官方Book Performance Tuning部分章节没有按配置项进行索引,不能达到快速查阅的效果.

mongodb性能测试

- - 数据库 - ITeye博客
1) Mongodb的非安全插入方式,在一开始插入性能是非常高的,但是在达到了两千万条数据之后性能骤减,这个时候恰巧是服务器24G内存基本占满的时候(随着测试的进行mongodb不断占据内存,一直到操作系统的内存全部占满),也就是说Mongodb的内存映射方式,使得数据全部在内存中的时候速度飞快,当部分数据需要换出到磁盘上之后,性能下降很厉害.

JDBC性能小贴

- - 开源软件 - ITeye博客
本文收集了一些用于提升JDBC性能的方法. Java应用或者JavaEE Web应用的性能是很重要的,尤其是数据库后端对应用的性能影响. 不知你是否经历过Java、JavaEE web应用非常慢的案例没有(处理一个简单的请求都要花上好几秒的时间用于数据库访问,分页、排序等). 下面这些贴士也许能提升Java应用的性能.

hbase性能调优

- - 数据库 - ITeye博客
   1)、hbase.regionserver.handler.count:该设置决定了处理RPC的线程数量,默认值是10,通常可以调大,比如:150,当请求内容很大(上MB,比如大的put、使用缓存的scans)的时候,如果该值设置过大则会占用过多的内存,导致频繁的GC,或者出现OutOfMemory,因此该值不是越大越好.

中断与性能

- - 并发编程网 - ifeve.com
中断,会导致正在运行的CPU要停下手头的工作去响应,这需要工作任务的切换,就带来了我们熟知的上下文切换,而频繁上下文切换,是对系统性能的重要影响因素. 那怎么减少中断带来的影响呢. 现在CPU往往是多核,如16、32核,是否可以把中断绑定到其中一个CPU上,再把其他剩余的cpu用于应用的计算. 因为之前是单核的原因,传统的很多做法是会把中断扔给cpu0处理,在linux下,可执行mpstat -P ALL 1,查看各个cpu上的中断情况.

Hebernate 性能优化

- - 企业架构 - ITeye博客
文章分为十三个小块儿对Hibernate性能优化技巧进行总结性分析,分析如下:. 一、在处理大数据量时,会有大量的数据缓冲保存在Session的一级缓存中,这缓存大太时会严重显示性能,所以在使用Hibernate处理大数 据量的,可以使用session. clear()或者session. evict(Object) 在处理过程中,清除全部的缓存或者清除某个对象.