大偏移量下Redis、MongoDB分页/排名性能比较

标签: redis mongodb 分页 | 发表时间:2014-12-05 22:30 | 作者:u014723529
出处:http://blog.csdn.net

题目其实并不太准确,因为数据库并不会提供 分页、排名等功能,提供的只是数据的存取,分页排名这些都是我们基于数据库的实用案例而已。然而无论是 Redis还是 MongoDB,通常都有一些常规的做分页和排名的方法。本文就通过一些测试数据来向大家介绍Redis和MongoDB(以及传统关系型数据库)在这方面的性能差别。

分页

首先我们来做一个分页,在MongoDB中示例数据如下所未:

db.scores.find();
{lid: ObjectId("4fe506dabb2bfa742d000001"), score: 1, name: 'user_1'}
{lid: ObjectId("4fe506dabb2bfa742d000001"), score: 2, name: 'user_2'}
{lid: ObjectId("4fe506dabb2bfa742d000001"), score: 3, name: 'user_3'}
{lid: ObjectId("4fe506dabb2bfa742d000001"), score: 4, name: 'user_4'}

其中lid字段用于区分不同的纬度,主要用在筛选上,在测试collection中,一共有五个不同的lid值,每一个对应1,200,000条数据,一共6,000,000条数据。索引在lid 和 score上。(下面的查询能使用到索引)

然后我们进行下面的性能测试:

collection = Mongo::Connection.new.db('test').collection('scores')
Benchmark.bmbm do |x|
  x.report("mongo small") do
    100.times do |i|
      collection.find({:lid => lids.sample}, {:fields => {:_id => false, :score => true, :user => true}}).sort({:score => -1}).limit(20).skip(i * 20).to_a
    end
  end
  x.report("mongo medium") do
    100.times do |i|
      collection.find({:lid => lids.sample}, {:fields => {:_id => false, :score => true, :user => true}}).sort({:score => -1}).limit(20).skip(i * 1000).to_a
    end
  end
  x.report("mongo large") do
    100.times do |i|
      collection.find({:lid => lids.sample}, {:fields => {:_id => false, :score => true, :user => true}}).sort({:score => -1}).limit(20).skip(i * 10000).to_a
    end
  end
end

上面分别对skip条数比较小,中等大小和非常大三种情况进行了测试。而limit指定获取的数据都一样是20条。这三种情况下的测试结果分别是:0.6 秒, 17 秒,173 秒。

我们可以看到,对MongoDB来说,skip的大小严重影响性能,应该严格避免特别大的skip操作。

下面我们将类似的数据用Redis的Sorted Sets进行存储。并进行相应的性能测试

redis = Redis.new(:driver => :hiredis)
Benchmark.bmbm do |x|
  x.report("redis small") do
    100.times do |i|
      start = i * 20
      redis.zrevrange(lids.sample, start, start + 20, :with_scores => true)
    end
  end
  x.report("redis medium") do
    100.times do |i|
      start = i * 1000
      redis.zrevrange(lids.sample, start, start + 20, :with_scores => true)
    end
  end
  x.report("redis large") do
    100.times do |i|
      start = i * 10000
      redis.zrevrange(lids.sample, start, start + 20, :with_scores => true)
    end
  end

这里skip的值和上面MongoDB中是一样的,那么Redis的表现如何呢。这三种情况下的测试结果分别是:0.028 秒, 0.025 秒, 0.028 秒。

采用类似于MongoDB的数据结构存储在PostgreSQL中并进行相同的测试,其结果比MongoDB还要差一点。具体结果如下:

mongo small   0.6
mongo medium   17
mongo large   173
redis small   0.028
redis medium   0.025
redis large   0.028
pg small   1
pg medium   122
pg large   650

排名

排名功能与分页功能类似,不同的是排名是通过计算大于某个值的条数来做的。

比如:

//sql
select count(*) from scores where lid = $1 and score > $2

//mongo
db.scores.find({lid: lid, score: {$gt: score}}).count()

由于排名和分页实现原理上类似,所以结果实际上差不多。测试结果如下:

mongo top rank   1.155847
mongo average    22.291007

redis top rank   0.169442
redis average    0.162205

pg top rank      0.714144
pg average       21.771570

结论

上面做了对比,那么本文要说一个什么问题呢?

首先,在MongoDB中,尽量避免进行比较大的skip操作,比如在分页中,如果你能知道需要获取数据的上一条score是多少,那么可能能够用下面的方法来获取你要的数据,而不是通过一次很大的skip操作。

  db.scores.find({lid: lid, score: {$lt: last_score}}).sort({score: -1}).limit(20)

另外,如果你需要进行比较大的skip操作或者count比较大的数量,那么可以考虑采用Redis的Sorted Sets来做。

后记

本文在微博上引起了一些技术朋友的讨论,对于对比的问题这里做一个说明。

我 们知道,Redis是内存数据库,而MongoDB不是,所以有朋友质疑这里的对比是否只是内存与磁盘的对比。实际上这一说法不无道理,上面的测试数据出 自原作者文章,其文章也并未提及MongoDB是否都在内存中。根据我个人的实验结果,当数据全部能够在内存中时,确实不会出现如本文中所说的 MongoDB性能严重差异。但是,随着skip的变大,操作时间还是在显著变长,而Redis的Sorted Sets则相对稳定。

同时也欢迎更多实验对比数据和原理分析的讨论。感谢大家。


作者:u014723529 发表于2014-12-5 14:30:46 原文链接
阅读:77 评论:0 查看评论

相关 [redis mongodb 分页] 推荐:

大偏移量下Redis、MongoDB分页/排名性能比较

- - CSDN博客数据库推荐文章
题目其实并不太准确,因为数据库并不会提供 分页、排名等功能,提供的只是数据的存取,分页排名这些都是我们基于数据库的实用案例而已. 然而无论是 Redis还是 MongoDB,通常都有一些常规的做分页和排名的方法. 本文就通过一些测试数据来向大家介绍Redis和MongoDB(以及传统关系型数据库)在这方面的性能差别.

使用Cacti监控MongoDB和Redis

- Wang Dong - NoSQLFan
Cacti是一套基于PHP,MySQL,SNMP及RRDTool开发的网络流量监测图形分析工具. 被广泛的用于对服务器的运维监控中,Cacti提供了一种插件式的管理,只要按要求写好特定的模板,那么你就可以对任何服务进行流量监控. 本文就是要为大家介绍两个模板,分别是MongoDB和Redis的Cacti模板,使用它,你可以对你的MongoDB和Redis服务进行流量监控.

[转][转]Cassandra、MongoDB、CouchDB、Redis、Riak、HBase比较

- - heiyeluren的blog(黑夜路人的开源世界)
来源: http://blog.nosqlfan.com/html/1845.html. 在NoSQL如日中天的今天,各种NoSQL产品可谓百花齐放,但每一个产品都有自己的特点,有长处也有不适合的场景. 本文对 Cassandra,  Mongodb,  CouchDB,  Redis,  Riak 以及  HBase 进行了多方面的特点分析,希望看完此文的您能够对这些NoSQL产品的特性有所了解.

Mongodb与Redis应用指标对比

- - CSDN博客数据库推荐文章
    MongoDB和Redis都是NoSQL,采用结构型数据存储. 二者在使用场景中,存在一定的区别,这也主要由于. 二者在内存映射的处理过程,持久化的处理方法不同. MongoDB建议集群部署,更多的考虑到集群方案,Redis. 更偏重于进程顺序写入,虽然支持集群,也仅限于主-从模式. 丰富的数据表达、索引;最类似于关系数据库,支持丰富的查询语言.

NOSQL数据库大比拼:Cassandra vs MongoDB vs CouchDB vs Redis vs Riak vs HBase

- - 博客园_Ruby's Louvre
话说,尽管 SQL 数据库一直是我们IT行业中最有用的工具,然而,它们这样在行业中超过15年以上的“转正”终于就要寿终正寝了. 现在,虽然关系型数据库仍然无所不在,但它越来越不能满足我们的需要了. 但是,各种 "NoSQL" 数据库之间的差异比当年众多关系型数据库之间的差异要大许多. 这就加大了人们在建设自己的应用是选择合适的数据库的难度.

mongodb中分页显示数据集的学习

- - ITeye博客
  这次继续看mongodb中的分页. 3)每次只显示2条,使用limit就可以了.   需要排下序,没问题,加上sort就可以了.    ,比如根据name排序.    如果只需要显示某些列,可以这样:.    _id:0这样的方式,连id列也不显示了.    比如要范围第3,第4条记录,使用skip(2),跳过2条.

百万级运维经验一:Mongodb和Redis数据不能放在同一个服务器

- - CSDN博客系统运维推荐文章
一开始时,为了省服务器,把Mongodb和Redis放在一个服务器上. 网站每到高峰期都特别卡,还经常出现502. 找了很久的原因,发现硬盘的写数据很大,IOPS也很高,排查了很多原因都没找到. 然后再仔细研究监控,发现写硬盘的操作很有规律,每隔几分钟就有一次频繁的写硬盘,联想到Redis同步数据到硬盘的间隔就是几分钟,所以开始怀疑是Redis引起的.

[mongodb] java操作mongodb

- - 数据库 - ITeye博客
           //实例化Mongo对象,连接27017端口.                               //连接名为yourdb的数据库,假如数据库不存在的话,mongodb会自动建立. //从Mongodb中获得名为yourColleection的数据集合,如果该数据集合不存在,Mongodb会为其新建立.

【MongoDB】MongoDB之优化器Profiler

- - CSDN博客数据库推荐文章
在mysql数据库中,慢查询日志经常作为优化数据库的依据, mongodb中依然有类似的功能. Mongodb自带的profiler,可以方便地记录所有耗时的操作,以便于调优;. 一、开始profiler功能. 开启profier功能有两种:. 第一种就是直接在启动参数里面进行设置,就在茄冬mongodb时候添加-profile=级别.