大数据下的用户画像

标签: IT咨询 | 发表时间:2016-11-20 14:35 | 作者:人月神话
出处:http://blog.sina.com.cn/cmmi


简单点来说用户画像,即是 根据用户的静态基本属性和动态行为数据来构建一个可标签化的用户模型

  • 静态属性:个人基本信息(地域,年龄,性别,婚姻),家庭信息,工作信息等。
  • 动态行为:购买行为,点击行为,浏览,评论,营销活动参与行为,退换货行为,支付行为等。

为何要进行用户画像,核心还是后续的针对性营销,当我们组织一次针对性营销的时候,首先要确定的就是营销的用户群体,那么就要从用户标签中精确定位这个群体。举例来说当我们要推销一款0-1岁小孩用的商品的时候,我们希望找到的最精确用户标签就是有0-1岁小孩这个标签,那我们进行的打折促销,邮件和短信推送势必将更加具有针对性。

对于电商大数据下的用户画像和应用,建议大家参考mooc网的一个免费教程,地址:

http://www.imooc.com/learn/460

在这里简单再总结和说明下构建一个用户画像的关键步骤和流程

1. 采集数据

对于静态数据一般在用户注册的时候填写基础信息时候采集,包括后续通过用户调查表方式采集数据。对于动态数据采集相对容易,比如购买和交易行为,点赞和评论行为,添加购物车行为等,这些都会持久化到数据库存储。而较难采集且数据量巨大的是用户的浏览行为,这部分数据量相当大,而且不会存储到数据库。

2. 数据模型

常用的数据模型包括了自然语言处理和分析,回归模型,聚类模型,文本挖掘和机器学习等。在模型构建前有个重点就是数据本身的检验(回答数据本身是否准确可靠),数据的相关性分析等。

3. 用户画像建模

针对电商大数据用户画像建模,基于前面静态属性和动态行为展开,往往可以从用户基本信息,购买交易行为,营销活动参与行为,用户购买商店,购买类目多个维度进行。

4. 基于大数据平台的开发和实现

具体的开发要注意到几个关键步骤,一个是找到需要采集的数据对应的数据库表和字段信息,其次是需要基于建模的需求和目标构建宽表,通过Hive语句的开发将底层原始基础数据整理后放入到宽表中。最后才是基于Mahout或R语言等进行回归预测或聚类分析等。

在进行完建模和聚类分析后,我们可以基于大数据可视化技术对最终结果进行可视化的呈现。

把前面基本过程简单描述后,再回头来看一些关键的点。

群体还是个体

要注意进行用户画像的时候, 可能针对的是一个用户群体,也可能针对的是一个具体的用户。比如我们可以对月均消费金额>1000元,消费次数>2次的用户群体进行画像,得到这个群体的年龄分布,学历分布,地域分布等;其次我们也可以对张三这个特定用户进行画像,给出他是有小孩,动漫迷,音乐发烧友等标签。

由个体到群体是进行聚类的基础,即我们可以通过大量的个体行为数据,基于某些关键维度进行聚合,通过聚合得出以下大的归类。比如对耳机类商品购买,通过聚类分析后可能得出发烧+品质型,尝鲜型,价格敏感型等关键分类。

对于聚类完成后我们还需要进一步对聚类的抽象用户进行画像说明,比如对于发烧型抽象用户群体特征:20岁以下,学生,喜欢日系品牌,2000价格区间等。

聚类最终的结果将可用于针对性营销,类似当我们推出一个发烧耳机的时候我们就知道推送给哪些用户,或者当我们有大的促销优惠的时候应该推送哪些用户等。



下面梳理下识别和分析维度的过程简单来说对于电商大数据分析中的用户画像,其核心的展开逻辑应该是如此的,即是:

用户购买或希望购买某一个商品

可以看到我们所有的用户分析的维度展开均是基于上面这句话展开,可以看到两个静态的对象(用户,商品)通过购买或潜在购买行为发生了关系和链接。那实际维度展开过程即:

a.用户基本属性先展开第一层


包括了性别,年龄,区域,婚否,工作还是学生,年收入,是否有小孩,是否有车,电话号码等。(第一层展开里面会出现问题,即有些基础数据我们没法收集到,比如是否有车?那么我们可以从用户购买行为来反向推测用户是否有车)。

第一层展开后涉及到第二层的展开,比如区域,区域本身又是一个树状对象,可以做为展开和分析的维度。通过手机号我们可以分析出运营商,进入转到运营商维度。

b.对于商品同样,可以先做第一层的展开

商品本身有商品的类目,那么类目是一个重要的分析维度。一个商品涉及到自营或其它的2B商家,那么就涉及到商家这个维度。一个商品还涉及到最终的生产商家和品牌,那么又可以分析到品牌这个维度。这些都是我们可以在商品这个静态熟悉上进行展开的内容。

c.动态行为展开

动态行为包括了购买行为和潜在购买行为,对于浏览,点评,放入购物车等都可以纳入潜在购买行为。实际上我们应该更加关注潜在购买行为,促使潜在购买转变为最终购买。

下面简单说下购买行为,一次购买行为就涉及到订单,支付和配送,也包括逆向的退换货。那么这些都是可以进行维度分析的内容。

一次购买就涉及到购买的时间,购买的地点,PC端还是移动端购买,购买的时候用的手机,购买的具体商品,购买的总金额,支付的方式,送货的方式,是否基于促销活动购买,是否使用打折券,退货或换货情况等。这些都应该纳入对动态购买行为的分析中。

从上面可以看到把所有的维度都分析清楚后,我们就很容易进行分组和汇总操作,得出我们希望的信息,并将信息写入到设计好的宽表中。这种中间处理往往是进行用户画像必须的一个阶段。

 

相关 [大数据 用户 画像] 推荐:

大数据下的用户画像

- - 人月神话的BLOG
简单点来说用户画像,即是 根据用户的静态基本属性和动态行为数据来构建一个可标签化的用户模型. 静态属性:个人基本信息(地域,年龄,性别,婚姻),家庭信息,工作信息等. 动态行为:购买行为,点击行为,浏览,评论,营销活动参与行为,退换货行为,支付行为等. 为何要进行用户画像,核心还是后续的针对性营销,当我们组织一次针对性营销的时候,首先要确定的就是营销的用户群体,那么就要从用户标签中精确定位这个群体.

基于用户画像大数据的电商防刷架构

- - 快课网
最近1~2年电商行业飞速发展,各种创业公司犹如雨后春笋大量涌现,商家通过各种活动形式的补贴来获取用户、培养用户的消费习惯. 但任何一件事情都具有两面性,高额的补贴、优惠同时了也催生了“羊毛党”. “羊毛党”的行为距离欺诈只有一步之遥,他们的存在严重破环了活动的目的,侵占了活动的资源,使得正常的用户享受不到活动的直接好处.

基于大数据的用户画像构建(理论篇)

- - 人人都是产品经理
简而言之,用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型. 构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识. 举例来说,如果你经常购买一些玩偶玩具,那么电商网站即可根据玩具购买的情况替你打上标签“有孩子”,甚至还可以判断出你孩子大概的年龄,贴上“有5-10岁的孩子”这样更为具体的标签,而这些所有给你贴的标签统在一次,就成了你的用户画像,因此,也可以说用户画像就是判断一个人是什么样的人.

极光大数据:最新研究,王者荣耀用户画像

- - IT瘾-bigdata
“蓝爸爸红爸爸”、“打野推塔带兵线”. 诸葛亮张良鲁班王昭君孙悟空大战亚瑟雅典娜安琪拉宫本武藏不知火舞. 如果你不知道上面在说什么,你可能已经OUT了. 是的,我说的正是那款史上火热度排名第一的手游《王者荣耀》. 极光大数据发布《王者荣耀研究报告》,从渗透率、日活跃用户数、月活跃用户数、日新增用户数、用户使用习惯及用户画像等方面,全方位剖析这款现象级手游的成长史及现状.

[原]基于Spark的大数据精准营销中搜狗搜索引擎的用户画像挖掘

- - Soul Joy Hub
转载请注明:转载 from. from CCF举办的“大数据精准营销中搜狗用户画像挖掘”竞赛. “用户画像”是近几年诞生的名词. 很多营销项目或很多广告主,在打算投放广告前,都要求媒体提供其用户画像. 在以前,大多媒体会针对自身用户做一个分类,但是有了大数据后,企业及消费者行为带来一系列改变与重塑,通过用户画像可以更加拟人化的描述用户特点.

细说 用户画像

- - 神刀安全网
对于互联网从业者,经常会提到一个词——用户画像. 作为一名刚主要做用户画像DMP的数据PM,工作中总是会被需求方问到——. 我要查看XXX的用户画像 或是 能否能够XXXX类用户的画像. 抑或是有别的产品会问到:你们是怎么做用户画像的. 然而在沟通的过程中,我发现,不同的人对用户画像的理解差异还是非常大的.

用户画像TGI指标

- - 标点符
对于TGI指数,百科是这样解释的——TGI指数,全称Target Group Index,可以反映目标群体在特定研究范围内强势或者弱势. TGI指数计算公式 = 目标群体中具有某一特征的群体所占比例 / 总体中具有相同特征的群体所占比例 * 标准数100. 举个例子,假设一家外语学校里面有家烧烤店,每天晚上男生和女生顾客都是50%,你觉得男生还是女生更倾向于光顾这个烧烤店呢.

创建定性用户画像

- - 腾讯CDC
  在产品研发过程中,确定明确的目标用户至关重要. 不同类型的用户往往有不同甚至相冲突的需求,我们不可能做出一个满足所有用户的产品.   为了让团队成员在研发过程中能够抛开个人喜好,将焦点关注在目标用户的动机和行为上,Alan Cooper提出了Persona这一概念. “赢在用户”这本书将其翻译为“人物角色”,在腾讯我们习惯了使用“用户画像”这个术语.

族群歧视与用户画像

- - IT瘾-tuicool
题图是这两天的新闻人物美籍越南人 Dr. 美国朋友觉得奇怪,为什么要说他是越南人. 另一位 Asian,估计是位澳大利亚籍香港人,发了一条推特说——Dr. Dao 当时反抗的暴力其实是合法的强制执法. 第三位 Asian,相信是位中国籍大陆知友,读了这条推特很愤慨,挥键写就高赞爆款推送《比打人更可怕的是国人的落井下石》.