你真的懂用户画像吗?

标签: | 发表时间:2019-03-05 22:10 | 作者:
出处:https://mp.weixin.qq.com

在移动互联网时代,精细化运营成为企业重要的竞争力,此时,“用户画像”的概念也应运而生。用户画像是指,在大数据时代,我们通过对海量数字信息进行清洗、聚类、分析,从而将数据抽象成标签,利用这些标签将用户形象具体化,从而为用户提供有针对性的服务。在下文中,我们将以个推用户画像产品为例,为你详解“用户画像”的技术特点和使用价值。

个推用户画像产品依托个推多年积累的海量数据及强大的数据分析能力,可为 APP 开发者提供丰富的用户画像数据以及实时的场景识别能力,进而帮助客户了解用户信息,从而助力移动 APP 目标用户精准筛选、个性化推送消息和应用更新下载等。

用户画像的形成需要经历四个过程,主要包括数据收集、数据清洗、数据建模分析、数据产出。其中,数据清洗和数据建模统称数据处理,在经过数据处理之后,个推凭借多年积累的大数据能力,以独特的冷、热、温数据维度分析进行数据产出形成用户画像。

一、用户画像用了哪些技术?

在数据处理阶段,个推用户画像产品的大数据计算架构采用了 Kafka 分布式发布订阅消息系统,这一系统具有高吞吐量、高稳定性的特点。数据清洗可利用 HADOOP、SPARK 实现设备唯一性识别、行为数据的清洗等,从而去除冗余数据。这一过程支持交互计算和多种复杂算法,同时,它还支持数据实时 / 离线计算。


在数据建模的过程中,主要用了机器学习中的聚类(无监督学习) 和深度学习技术,这能让模型对用户行为数据主动学习,进行行为判断,由此产出用户标签。


之后,数据的产出会形成冷数据画像、温数据回溯、热数据场景和定制化标签四种画像。

冷数据画像,是指基于大数据分析出用户的属性,改变概率较小的数据,如用户的年龄段、性别等。

“温数据”则可以回溯用户近期活跃的线上和线下场景,具有一定的时效性。

“热数据”是指用户当下的场景及实时的用户特征,帮助 APP 运营者抓住稍纵即逝的营销机会。

定制化标签是将个推数据与第三方数据结合起来,共同建模得出具有价值的特征标签。总的来说,个推用户画像产品不仅能产出通用的标签维度,也有定制化标签的输出能力。


二、如何构建用户画像?

“用户画像”的构建需要技术和业务人员的共同参与,以避免形式化的用户画像,具体做法可参考个推构建用户画像的流程:

(1) 标签体系设计。开发者需要先了解自身的数据,确定需要设计的标签形式。

(2) 基础数据收集、多数据源数据融合。在建设用户画像时,个推用户画像产品会整合个推以及该 APP 自身的数据。

(3) 实现用户统一标识。多数情况下,APP 的众多用户分布于不同的账号体系中,个推会将其统一标识,帮助 APP 打通账号,实现信息快速共享。

(4) 用户画像特征层构建,即将每一个数据进行特征化。

(5) 画像标签规则 + 算法建模,两者缺一不可。在实际的应用中,算法难以解决的问题,利用简单的规则也可以达到很好的效果。

(6)利用算法对 所有用户打标签

(7) 画像质量监控。在实际的应用中,用户画像会产生一定的波动,为了解决这个问题,个推建设了相应的监控系统,对画像的质量进行监控。

总之,个推用户画像构建的整体流程,可以概况为三个部分:

第一,基础数据处理。基础数据包括用户设备信息、用户的线上 APP 偏好以及线下场景数据等。

第二,画像中间数据处理。处理结果包括线上 APP 偏好特征和线下场景特征等。

第三,画像信息表。表中应有四种信息:设备基础属性;用户基础画像,包括用户的性别、年龄段、相关消费水平等;用户兴趣画像,即用户更有兴趣的方向,比如用户更偏好拼团还是海淘;用户其它画像等。

在个推用户画像构建的过程中,机器学习占据了较为重要的位置。机器学习主要应用在海量设备数据采集、数据清洗、数据存储的过程。

三、用户画像能做什么?

用户画像常用在电商、新闻资讯等 APP,帮助 APP 打造内容精准推荐系统,实现千人千面运营。

  • 基于用户特征的个性化推荐

APP 的运营者通过个推用户画像提供的性别、年龄段、兴趣爱好等标签,分别展示不同的内容给用户, 以达到精准化运营。


  • 基于用户特征指导内容推荐

基于用户特征指导内容的推荐是指找到与目标相似的用户群,利用该用户群的行为特征对目标用户进行内容推荐,具体过程如下图:


在这里,我们需要解释一下其中所涉及到的相似性建模技术。相似性建模可类比于聚类建模,它是无监督学习中的一种,它指的是寻找数据中的特征,把具有相同特征的数据聚集在一组,赋予这些聚集在一起的数据相同的特征标签,从而给这些具有这些特性的用户推送相同的内容。


这种推荐方式的优点是,它的自有特征是经过 APP 长期积淀而来,颗粒度更细,适用性更强,对用户的认识更全面,效果能持续提升,而且它还能针对 APP 所处行业与自身需求,量身定制匹配算法,让推荐更精准。

此外,如上文所言,个推用户画像能够结合第三方数据做定制化建模,通过双方共同建模得出显著价值和特征标签,依据不同标签向用户推送不同的内容。这样不仅能保证推送的内容更精准,覆盖面也更广泛,而且标签增补的方式,也可以很大程度上提升流量价值。

四、开发者如何接入?

个推用户画像 SDK 的接入主要有两个方式:

  • SDK 集成:客户端集成个推用户画像 SDK,进行初始化 SDK 后,返回给客户一个 ID 即 GIUID(唯一身份标识), 此 ID 需要由客户端提交到客户服务器,然后服务器通过 API 接口传入 GIUID 进行查询用户画像标签数据。


  • API 接口调用:客户将应用名称、包名及服务端出口 IP 提供后,返回 APP ID 等相关信息。客户根据《个推用户画像数据服务接口文档》及《用户画像编码表》集成测试后方可调用 API 接口查询画像信息。


具体的集成文档参见以下链接:

Android:http://docs.getui.com/gexiang/start/android/

iOS:http://docs.getui.com/gexiang/start/ios/

服务端:http://docs.getui.com/gexiang/start/server/

相关 [用户 画像] 推荐:

细说 用户画像

- - 神刀安全网
对于互联网从业者,经常会提到一个词——用户画像. 作为一名刚主要做用户画像DMP的数据PM,工作中总是会被需求方问到——. 我要查看XXX的用户画像 或是 能否能够XXXX类用户的画像. 抑或是有别的产品会问到:你们是怎么做用户画像的. 然而在沟通的过程中,我发现,不同的人对用户画像的理解差异还是非常大的.

用户画像TGI指标

- - 标点符
对于TGI指数,百科是这样解释的——TGI指数,全称Target Group Index,可以反映目标群体在特定研究范围内强势或者弱势. TGI指数计算公式 = 目标群体中具有某一特征的群体所占比例 / 总体中具有相同特征的群体所占比例 * 标准数100. 举个例子,假设一家外语学校里面有家烧烤店,每天晚上男生和女生顾客都是50%,你觉得男生还是女生更倾向于光顾这个烧烤店呢.

创建定性用户画像

- - 腾讯CDC
  在产品研发过程中,确定明确的目标用户至关重要. 不同类型的用户往往有不同甚至相冲突的需求,我们不可能做出一个满足所有用户的产品.   为了让团队成员在研发过程中能够抛开个人喜好,将焦点关注在目标用户的动机和行为上,Alan Cooper提出了Persona这一概念. “赢在用户”这本书将其翻译为“人物角色”,在腾讯我们习惯了使用“用户画像”这个术语.

族群歧视与用户画像

- - IT瘾-tuicool
题图是这两天的新闻人物美籍越南人 Dr. 美国朋友觉得奇怪,为什么要说他是越南人. 另一位 Asian,估计是位澳大利亚籍香港人,发了一条推特说——Dr. Dao 当时反抗的暴力其实是合法的强制执法. 第三位 Asian,相信是位中国籍大陆知友,读了这条推特很愤慨,挥键写就高赞爆款推送《比打人更可怕的是国人的落井下石》.

大数据下的用户画像

- - 人月神话的BLOG
简单点来说用户画像,即是 根据用户的静态基本属性和动态行为数据来构建一个可标签化的用户模型. 静态属性:个人基本信息(地域,年龄,性别,婚姻),家庭信息,工作信息等. 动态行为:购买行为,点击行为,浏览,评论,营销活动参与行为,退换货行为,支付行为等. 为何要进行用户画像,核心还是后续的针对性营销,当我们组织一次针对性营销的时候,首先要确定的就是营销的用户群体,那么就要从用户标签中精确定位这个群体.

用户画像从入门到挖坑

- - leejun2005的个人页面
用户画像承载了两个业务目标:一是如何准确的了解现有用户;二是如何在茫茫人海中通过广告营销获取类似画像特征的新用户. 比如在了解用户的基础上明确产品定位,“投其所好”;获取一个新用户/新订单;售前的精准营销、售中的个性化推荐匹配,以及售后的增值服务等. 1.2 用户流量的三大终极问题:认知用户. 现存客户 (Existing Customer) - 我的现存客户是怎么样,喜欢什么,什么消费习惯,哪些客户最值钱等等.

数据驱动与用户画像

- -
最近不少客户提出,希望与神策数据共同建设“用户画像”以驱动产品智能,但什么才是用户画像呢. 我们通过这篇文章,介绍我们理解的两种用户画像(User Persona 和 User Profile),以及如何构建用户画像(User Profile)的标签体系并驱动产品智能. 第一种用户画像(User Persona)是产品设计、运营人员从用户群体中抽象出来的典型用户:.

你真的懂用户画像吗?

- -
在移动互联网时代,精细化运营成为企业重要的竞争力,此时,“用户画像”的概念也应运而生. 用户画像是指,在大数据时代,我们通过对海量数字信息进行清洗、聚类、分析,从而将数据抽象成标签,利用这些标签将用户形象具体化,从而为用户提供有针对性的服务. 在下文中,我们将以个推用户画像产品为例,为你详解“用户画像”的技术特点和使用价值.

浅谈用户画像的系统化

- -
|0x00 如何理解用户画像. 最近跟朋友聊天,谈起了35岁危机,我的观点是:35岁没什么大不了的,我多学点金融知识,以后转行做金融去;朋友的观点是,转行可不是说说就行,不是说你了解一个行业,就可以去工作的,你要深入理解背后的商业逻辑. 随后,举了一个例子:“什么是用户画像,用户画像如何应用. 这个问题,对于做数据研发的我来说,简直不要太简单.

基于用户画像大数据的电商防刷架构

- - 快课网
最近1~2年电商行业飞速发展,各种创业公司犹如雨后春笋大量涌现,商家通过各种活动形式的补贴来获取用户、培养用户的消费习惯. 但任何一件事情都具有两面性,高额的补贴、优惠同时了也催生了“羊毛党”. “羊毛党”的行为距离欺诈只有一步之遥,他们的存在严重破环了活动的目的,侵占了活动的资源,使得正常的用户享受不到活动的直接好处.