人脸识别算法终于超过了人类本身

标签: IT技术 人脸识别 算法 | 发表时间:2014-05-04 01:04 | 作者:菜鸟浮出水
出处:http://blog.jobbole.com

计算机科学家已经开发出一种新的人脸识别算法,在识别人脸的能力上比人类本身更加强大。

我们每个人都有过认不出某个自己曾经认识的人的经历,在不同的姿势、光照和表情下,这其实是一件比较困难的事情。计算机识别系统同样存在这些问题。事实上,尽管全世界的计算机科学家努力了这么多年,还是没有任何一种计算机识别系统在识别人脸方面能够像人类一样强大。

但这并非是说人脸识别系统不够准确。恰恰相反,最好的人脸识别系统在理想情况下比人类识别的表现要好的多。但是一旦环境情况变糟,系统的表现就差强人意了。而计算机科学家们当然是非常想要开发出一种算法,在各种情况下都能够表现优异。

现在,中国香港大学的汤晓鸥教授和他的学生路超超(对不起,译者没有找到这名学生的名字,只能音译了)宣布他们攻克了这个难题。他们开发了一种叫“高斯”的人脸识别算法首次超过了人类自身。

新的识别系统对于各种平台都能够提供人类级别的识别能力,从手机到电脑游戏中的人脸识别,从安全系统到密码控制等等。

任何一个人脸自动识别程序,首先要考虑的就是去构建一个合适的数据集来测试算法。那需要一个非常大范围的,各种各样的,带着各种复杂动作、光线和表情的,不同脸的图像,各种人种、年龄和性别都要考虑在内。然后还要考察服装、发型以及化妆等其他因素的影响。

比较幸运的是,已经有这么一个拥有各种不同人脸的标准数据库——Labelled Faces。它拥有超过13,000张不同人脸的图片,它们是从网络上收集的6000个不同的公众人物。更重要的是,每个人都拥有不止一张人脸图片。

当然也存在其他的人脸数据库,但是Labelled faces目前是计算机科学家们所公认的最具参考价值的测试数据集。

面部识别的任务是去比较两张不同的图片,然后判断他们是否是同一个人。(你可以试试看,能否看出这里展示的每对图片是否是同一个人。)

人类在这个数据库上的表现可以达到97.53%的准确度。但是没有任何一个计算机算法能够达到这个成绩。

直到这个新算法的出现。新的算法依照5点图片特征,把每张脸图规格化成一个150*120的像素图,这些特征分别是:两只眼睛、鼻子和嘴角的位置。

然后,算法把每张图片划分成重叠的25*25像素的区域,并用一个数学向量来描述每一个区域的基本特征。做完了这些,就可以比较两张图片的相似度了。

但是首先需要知道的是到底要比较什么。这个时候就需要用到训练数据集了。一般的方法是使用一个独立的数据集来训练算法,然后用同一个数据集中的图片来测试算法。

但是当算法面对训练集中完全不同的两张图片的时候,经常都会识别失败。“当图片的分布发生改变的时候,这种训练方法就一点都不好了。”超超和晓鸥说到。

相反,他们用四个拥有不同图片的,完全不同的数据集来测试“高斯”算法。举个例子,其中一个数据集是著名的Multi-PIE数据库,它包含了337个不同的物体,从15种不同的角度,在19种不同的光照情况下,分别拍摄4组图片。另一个数据库叫做Life Photes包含400个不同的人物,每个人物拥有10张图片。

用这些数据库训练了算法后,他们最终让新算法在Labelled Faces数据库上进行测试。目标是去识别出所有匹配和不匹配的图片对。

请记住人类在这个数据库上的表现是97.53%的精确度。“我们的“高斯”算法能够达到98.52%的精确度,这也是识别算法第一次击败人类。”超超和晓鸥说到。

这是一个令人印象深刻的结果,因为数据中的照片包含各种各样不同的情况。

超超和晓鸥指出,仍然有很多挑战在等着他们。现实情况中,人们可以利用各种附加的线索来识别,比如脖子和肩膀的位置。“超过人类的表现也许只是一个象征性的成就罢了”他们说。

另一个问题是花费在训练新算法上的时间,还有算法需要的内存大小以及识别两幅图所需要的时间。这可以用并行计算和特制处理器等技术来加快算法的运行时间。

总之,精确的人脸自动识别算法已经到来了,而且鉴于现在的事实,这只会更快。

人脸识别算法终于超过了人类本身,首发于 博客 - 伯乐在线

相关 [人脸识别 算法 人类] 推荐:

人脸识别算法终于超过了人类本身

- - 博客 - 伯乐在线
计算机科学家已经开发出一种新的人脸识别算法,在识别人脸的能力上比人类本身更加强大. 我们每个人都有过认不出某个自己曾经认识的人的经历,在不同的姿势、光照和表情下,这其实是一件比较困难的事情. 计算机识别系统同样存在这些问题. 事实上,尽管全世界的计算机科学家努力了这么多年,还是没有任何一种计算机识别系统在识别人脸方面能够像人类一样强大.

人脸识别发展史与算法综述

- king - CSDN博客推荐文章
      在我们生存的这个地球上,居住着近 65 亿人. 每个人的面孔都由额头、眉毛、眼睛、鼻子、嘴巴、双颊等少数几个区域组合而成,它们之间的大体位置关系也是固定的,并且每张脸的大小不过七八寸见方. 然而,它们居然就形成了那么复杂的模式,即使是面容极其相似的双胞胎,其家人通常也能够非常容易地根据他们面孔上的细微差异将他们区分开来.

人脸识别经典算法二:LBP方法

- - IT瘾-geek
与 第一篇博文特征脸方法不同,LBP(Local Binary Patterns,局部二值模式)是提取局部特征作为判别依据的. LBP方法显著的优点是对光照不敏感,但是依然没有解决姿态和表情的问题. 不过相比于特征脸方法,LBP的识别率已经有了很大的提升. 在[1]的文章里,有些人脸库的识别率已经达到了98%+.

既要高精度也要高性能,人脸识别主流算法大合集

- - InfoQ - 促进软件开发领域知识与创新的传播
在 上一篇文章中,我们回顾了人脸识别算法的发展历程,介绍了人脸识别算法从传统机器学习算法到现在的深度学习算法的演进历程. 接下来,我们将详细介绍一下人脸识别常见的应用方式,以及现在主流的人脸识别算法. 1.人脸识别的主要应用方式. 为了讲清楚人脸识别算法的设计思路,有必要首先介绍人脸识别在实际场景中的主要的三种不同的应用方式.

【人脸识别】初识人脸识别

- - CSDN博客推荐文章
由于导师给我们布置了每周阅读两篇大牛论文,并写ppt的任务. 反正ppt都写了,所以我想干脆直接把ppt的内容再整理一下写成博客. 近期的阅读论文都是 人脸识别相关的主题. 如果你研究过人脸识别,或者对这方面有兴趣,那么你一定听说过Paul Viola. 他可以算得上是人脸检测识别的始祖,他的一篇大作《RobustReal-time Object Detection》可以说是人脸识别领域最重要的一篇论文.

人脸识别技术准确性超人类,但商业化难在哪里_网易新闻

- -
 来源: 科技日报社-中国科技网. 北京天坛公园引入人脸识别技术发放卫生纸的消息,近来引发了《纽约时报》等多家外媒的兴趣. 据报道,天坛公园公厕的访客,如今需要和“一台计算机”进行视觉接触,才能够获得免费的卫生纸,这种脸部识别技术能够防止设备给同一个人重复发放卫生纸. 提升公德心也许是公园管理者的初衷,但不久前3·15晚会对技术漏洞的曝光,则让人脸识别这项人工智能领域应用程度较高的分支,遭遇质疑.

【转载】用HTML5进行人脸识别

- - HTML5研究小组
其中的一个特性是getUserMedia( W3C规范 ). 它是一个JavaScript API,可以让你访问(需要权限)用户的网络摄像头和麦克风. 今天发现一篇文章写的很有趣,叫你如何使用HTML5进行人脸识别. 在网页内进行人脸识别,很好很强大. “现代Web”不断发展出不少有趣的API,但你并不会在大多数项目中使用到所有的内容.

自动人脸识别基本原理

- - IT技术博客大学习
标签:   https://b2museum.   人脸识别经过近 40 年的发展,取得了很大的发展,涌现出了大量的识别算法. 这些算法的涉及面非常广泛,包括模式识别、图像处理、计算机视觉、人工智能、统计学习、神经网络、小波分析、子空间理论和流形学习等众多学科. 所以很难用一个统一的标准对这些算法进行分类.

用python库face_recognition进行人脸识别

- - 开源软件 - ITeye博客
期间在安装依赖包dlib时遇到问题,解决见:  http://kissmett.iteye.com/blog/2409857. 3.通过摄像头实时在获取的帧上进行人脸识别(较卡顿). basefacefilespath ="images"#faces文件夹中放待识别任务正面图,文件名为人名,将显示于结果中 baseface_titles=[] #图片名字列表 baseface_face_encodings=[] #识别所需人脸编码结构集 #读取人脸资源 for fn in os.listdir(basefacefilespath): #fn 人脸文件名.

温习传闻:Facebook收购人脸识别创业公司Face.com

- - 业界
导读:准备好再听一个后IPO 时代的Facebook 收购的传闻吗. 事实上,Face.com 传言将成为Facebook 的收购目标由来已久. 虽然我们还不能确定这次收购能否成真,但本文给出的一些分析还是饶意义的. 据以色列商业报纸Calcalist披露,社交网络巨人将要收购人脸识别科技公司Face.com.