让高管了解大数据分析(一)

标签: 产品运营 | 发表时间:2014-02-10 16:44 | 作者:佚名
出处:http://www.yixieshi.com

  过去三十年,许多公司增设新的管理层以应对变幻莫测的商业环境。上世纪80年代中期,对于多数公司而言,首席财务官还是个陌生的职位。然而,伴随着价值管理以及企业与投资人关系日趋透明,越来越多的公司有了首席财务官。随着品牌建设与客户管理对公司的重要性与日俱增,首席市场官就变得越来越重要,此外,还有不少公司设置了首席战略官,帮助公司应对来自市场的挑战。

  现在,数据分析的力量正深刻影响着商业格局。抓住数据发展带来的机遇,增加利润,提升生产力甚至打造全新的业务单元,成为了企业的新需求——这不仅需要信息基础设施领域的人才与投资,也需要变革思想观念,组织一线培训,提高团队的执行力。若没有强大的执行力,要充分驾驭数据分析的巨大浪潮将格外困难。

  大数据对公司的影响非常广泛,涉及市场营销、风险、运营等,高级管理层能够以不同的方式参与其中。某些情况下,可以将任务委托给首席信息官、首席市场官、首席战略官等。其他公司或许需要新的角色,如首席数据官、首席技术官或者首席分析师等,来组建一流的数据分析中心团队。

  本文致力于阐明相关高管们最重要的任务以及提出一些关键问题,对于这些问题的回答有助于重设企业高管结构。重新构想高管的角色与职责,听起来非常困难,但鉴于目前数据发展创造的机遇与挑战,如不重构高管结构,企业的发展将面临危机,也有可能陷入更为激烈的竞争环境中。

  数据分析团队的六大任务

  制定并实施一项大数据与先进分析战略,需要的不仅仅是将数据提供给外部服务提供商进行数据挖掘,而是让公司以经营日常业务的方式应对转变。变幻莫测的环境对高管团队提出严格要求。经验丰富的高管具有不可替代性,他们能够将理论应用于实际,引导企业渡过难关,作出艰难的权衡,在决策出现分歧时表明权威立场。新的数据分析文化,将成为企业领导力的新焦点,这是必然的发展趋势。经验表明,数据分析团队的需要完成六项任务。在分配任务与增设新职时,企业领导人需要充分评估这六大任务。

  创新思维

  已经着手创新思维,革新观念的高级团队需要获取数据分析知识,以此了解大数据的作用。同时,他们也需要接受数据已然成为业务核心这一事实。只有公司高层管理人员的思维与观念发生转变后,持久的行为变化才能辐射整个公司。初期阶段,非常重要的一个问题在于“数据分析怎么样才能帮助企业实现跨越式发展?”这种发展通常发生在企业每一个重要的业务与职能部门中,由具有影响力的高级主管所领导。

  一家大型运输公司的领导人要求其首席战略官负责数据分析。为了在公司高管中传播新的思想与知识,该首席战略官安排了高管们访问一些具有数据头脑的大公司。随后,他要求每个业务部门将数据分析作为明年战略规划的重点之一。这一做法非常成功。一方面,大数据融入了各部门的战略目标中;另一方面,其鼓励各部门的管理人员关注大数据。不久之后,他们便开始分享各自的想法并不断探索新的分析机遇——这一切给该公司注入了新的活力。

  制定数据分析策略

  与其他新兴商业机遇相同,数据分析潜力仍未得到充分发掘,原因在于缺少清晰的战略、计划与标准。许多公司在该领域受挫,有些是因为没有设置高管明确负责数据分析或者制定相关规划;还有则是因为没有开展充分的讨论或者投入必要时间分清楚大数据分析的轻重缓急。

  一家电信通讯公司的首席执行官致力于发展数据分析,尤其是利用数据分析优化客户关系与定价。尽管该公司聘用了一名高级分析人员,但很快发展陷入了停滞。诚然,分析团队付出了努力,深入探索模型与分析技术。但企业部门的同事没有及时培训其中级管理人员,如何使用这些模型:他们尚未了解这些分析与模型的潜力,因为这些并不是其战略重点。

  正如之前谈到的,要充分实现数据分析的潜力需要制定清晰的计划。计划需要划分重点并明确路径以实现预计的经营业绩,这与战略规划的流程相似。制定这样的计划需要团队的支持。

  在一家北美公司,首席执行官要求在线数字运营负责人(他具备丰富的数据知识)制定企业发展战略。首席执行官同时要求,该负责人在制定发展战略时必须与其他不熟悉大数据的业务部门负责人合作。这项合作——将数据与分析技术专家和经验丰富的前线运营者结合起来——保证了计划中列举的分析目标关注实际、具有影响力的商业决策。此外,在高管互相分享彼此进程后,这种协作模式成为了其他业务部门规划实践的蓝图。

  决定建设项目、需要购买或租借的服务

  另外一些重要决策,也需要有权威、有经验的高级领导人负责,这些决策涉及数据集成,搭建高级分析模型与工具以改善运营状况,由此就提出了巨大的资源需求。现在,越来越多的外部供应商有能力提供核心数据、模型与工具。因此,企业需要高管的经验来权衡究竟是“独立开发还是购买服务”?是否需要内部独立开发这些模型与分析工具,并彻底拥有这些自定的分析技术的知识产权以此满足迫在眉睫的开发战略需求与预期运营提升?或者规模扩张至关重要,以至于借用外部供应商的经验与人力是不是更为明智的选择?创建强大的数据资产也需要高级领导的参与。限制关键外部数据的访问需要就企业与客户、供应商或其他价值链上的第三方建立高级伙伴关系。

  不同零售商选择了完全不同的道路,这让企业领导人了解,其必须权衡的一系列因素。一些零售商与数据分析公司已经签订了长期合同,涵盖广泛的数据分析需求。其他方,包括传统企业与在线企业,也对内部数据与分析技术展开深入投资。每一个选择都反映出战略、金融与组织需求的动态集,这些都应该由高层管理而非中级管理人员决定。

  确保数据分析技术专业优势

  在任何战略方案中,企业总需要分析专家助力实现快速稳定发展。当今时代的数据分析博弈基于开放、云基础设施,因此,所有内部与外部数据能够轻松地以用户友好的方式整合。新环境也要求新的管理技能,调动更多资深数据专家。这些专家能够开发预测或优化模型,确保发展的可靠性。

  目前,在世界最热门的市场中,已经有许多公司争先寻找这些先进技术人才,争取到这些宝贵的人力并让他们与企业领导人真正互动起来,以此改变公司发展状况是高层管理人员未来的真正任务,而这通常需要创造性的解决方案。

  某家主流消费品企业的大数据领导人决定在远离公司本部的地区投资建立一个数据分析中心,该区拥有丰富的数据科学家与数据工程师青睐的优秀人才与文化环境。接下来,公司领导人完成最后一步,让每个分析团队与本部的业务团队间实现直接联系。

  本文链接: http://www.yixieshi.com/pd/15984.html

  ===============关于互联网的一些事===============

   互联网的一些事http://www.yixieshi.com )  ——  专注于互联网产品设计的媒体平台,报道互联网前沿资讯,分享产品设计经验、用户体验心得。为产品策划和产品运营人士提供专业的产品资讯文档,以及产品设计、策划、运营、交互设计、用户体验、电子商务信息、互联网创业信息、移动互联网等专业信息服务。

   官方微博:  @互联网的一些事

   官方微信: 互联网的一些事(ID:imyixieshi)

  如果您对互联网产品有独特的想法和见解,欢迎给我们投稿。投稿信箱:tougao#yixieshi.com (自行将“#”修改为“@”)

相关 [大数据 分析] 推荐:

谈大数据分析

- - 人月神话的BLOG
对于数据分析层,我们可以看到,其核心重点是针对海量数据形成一个分布式可弹性伸缩的,高查询性能的,支持标准sql语法的一个ODS库. 我们看到对于Hive,impala,InfoBright更多的都是解决这个层面的问题,即解决数据采集问题,解决采集后数据行列混合存储和压缩的问题,然后形成一个支撑标准sql预防的数据分析库.

大数据分析的5个方面

- - ITeye资讯频道
越来越多的应用涉及到大数据,不幸的是所有大数据的属性,包括数量、速度、多样性等等都是描述了数据库不断增长的复杂性. 那么大数据给我们带来了什么好处呢. 大数据最大的好处在于能够让我们从这些数据中分析出很多智能的、深入的、有价值的信息. 下面我总结了分析大数据的5个方面. Analytic Visualizations(可视化分析).

大数据分析最佳实践

- - 互联网分析
   转自:TTNN   Q先生杰作. 大概是从今年开始,big data一词逐渐成为术语,这跟整个世界的数据爆发当然有关系. 以前,人们喜欢用海量数据这个词,large-scale. 这看上去还是显得有点学术气, 像是BI人自己关起门来说自己的宝贝. 而big data更显通俗,在各行各业都显现出的一种势头,于是产生这个更加简单的词汇,大数据.

大数据分析的分类-转载

- - 人月神话的BLOG
原文:http://www.csdn.net/article/2011-08-15/303101. Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构. 按照数据分析的实时性,分为实时数据分析和离线数据分析两种.

下一代大数据分析技术

- - Parallel Labs
原文发表于《程序员》杂志2013年第2期.. 随着以Hadoop为代表的大数据分析技术的普及,大数据的商业价值得到深入挖掘,并开始在互联网、零售、医疗、物联网等多个行业里成为商业变革的主导力量. Facebook最近就发布了名为Graph Search的新型社交搜索产品,基于海量的社交关系网络及“Likes”行为数据,为用户提供个性化的社交搜索服务,该产品被认为将是Google搜索业务的重要竞争对手.

基于mdrill的大数据分析

- - CSDN博客云计算推荐文章
     数据越来越多,传统的关系型数据库支撑不了,分布式数据仓库又非常贵. 几十亿、几百亿、甚至几千亿的数据量,如何才能高效的分析. mdrill是由阿里妈妈开源的一套数据的软件,针对TB级数据量,能够仅用10台机器,达到秒级响应,数据能实时导入,可以对任意的维度进行组合与过滤.     mdrill作为数据在线分析处理软件,可以在几秒到几十秒的时间,分析百亿级别的任意组合维度的数据.

大数据分析查询引擎Impala

- - 标点符
Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数据. 已有的Hive系统虽然也提供了SQL语义,但由于Hive底层执行使用的是MapReduce引擎,仍然是一个批处理过程,难以满足查询的交互性. 相比之下,Impala的最大特点也是最大卖点就是它的快速.

大数据下的数据分析平台架构

- vento - 《程序员》杂志官网
随着互联网、移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. 作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”. 多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Hadoop平台之上.