大数据分析的几个极佳案例

标签: 数据技能 | 发表时间:2016-02-03 16:32 | 作者:刘旭坤
出处:http://www.techxue.com/forum.php

时至今日互联网每天新增的数据量达2.5*10^18字节,而全球90%的数据都是在过去的两年间创造出来的。举个直观的例子来说明一下互联网的数据量:假设大西洋里每一升海水代表一个字节的数据,那么整个大西洋存储的数据也只能到2010年就满了。

从外行的角度看来大数据是个挺了不起的东西,它也确实了不起,不过有一个前提就是我们能够有效地处理数据。怎样从海量数据中找出有用的信息才是最重要的。

本文中我们会讲一些大数据的用例比如分析促销行为、诊断交通状况等。我们还会谈一谈大数据的收集方法以及处理的过程。

网上促销

现在一个公司想取得商业上的成功,在线促销已经成为了很重要的手段。不过如果没有进行实时的数据分析那么可以说是干了相当于白干。成功的促销行为应当依据之前收集的数据来决定此次促销所应使用的文案、设计、界面以及针对的人群等。

因为这些数据可以帮助我们理解客户的需求以及市场的动向和机遇。如果想要充分利用这些数据,还需要做到高效地整合数据、打造一个低延迟的分析系统并为分析人员提供一些统计数据直观的图标来进行辅助。

在促销开始之前,我们先要订立一个业绩上的目标。为此我们应该清楚促销针对的客户群和市场。然后将销量和流行度指数这样的业绩目标进行量化。我们可以收集的数据包括销售报表、客户反馈、网站统计等等。

从多个数据源进行分析的好处是它能够为未来的发展提供更多的认识,这是单一的销售量所无法比拟的。单纯的销售量无法体现出消费者和环境的变化因此很难作为预测未来的可靠保障。

大数据在促销上的好处可以总结成下面几点:

富有针对性:这意味着钱能够真正地花在刀刃上,所以看似要多投入但其实能够节约开支。

及时反馈:大数据实时分析意味着可以针对市场的变化迅速调整打法。

为以后的市场决策打下基础。

交通疏导

比如你早上有重要会议,结果却被堵在路上不知道什么时候才能到公司,这时你可能除了干着急也没什么能做的。你不能,大数据分析可以。借助大数据分析,、你可以找出拥堵不严重的路甚至通过实时疏导来解决整个城市的拥堵问题。

在这方面做得比较突出的是谷歌地图。谷歌通过收集安卓用户的位置和运动等信息来预测交通状况并给予用户建议。

不过现在这项服务效果还不是特别好因为谷歌再怎么收集信息也很难知道用户此时使用的是什么交通工具,而开车和骑电动车对于交通的影响是很不一样的。

航班和车队管理

大数据分析在航班管理上可以帮助我们减少花费并节约时间。从每一架飞机或汽车收集的数据燃油消耗、负载、速度、路面状况和航线等。

航班如果计划得不好的话肯定费用会上升,这就意味着赚的钱会变少,这就是物流公司钟情于大数据提升运输效率的原因。数据分析可以帮助物流公司减少空驶的情况并优化行驶的路线。这么一来不光是效率能够提升,对保护环境也能做出一定的贡献。

航班车队管理还能够与交通疏导结合起来为车辆寻找最合适的行车路线,进一步提高效率降低开销。

总结一下大数据分析为航班和车队管理所带来的益处:

实时数据分析可以减少燃油的使用并降低尾气排放。

优化路线减少空驶率。

为车辆提供可视化辅助。

智能新闻聚合

现在已经有很多新闻应用可以根据用户的兴趣来聚合相应的新闻提供给用户。大数据在媒体的生产、归档和聚合上也能够发挥出作用。

单论新闻每天产生的数据量就以PB论而且还在迅速增长。在媒体领域大数据分析的目的是实时地识别、分类、结构化、翻译、分析和管理媒体内容。分析的结果则是为每一个用户单独提供的新闻聚合。

大数据分析为智能新闻聚合带来的益处包括:

高效的信息管理。

提高趋势和数据的即时性。

自动化的搜索和低延迟查询所带来的经济性。

除了这里提到的用例,大数据分析还有无穷的前景留待大家去发掘。

 

相关 [大数据 分析] 推荐:

谈大数据分析

- - 人月神话的BLOG
对于数据分析层,我们可以看到,其核心重点是针对海量数据形成一个分布式可弹性伸缩的,高查询性能的,支持标准sql语法的一个ODS库. 我们看到对于Hive,impala,InfoBright更多的都是解决这个层面的问题,即解决数据采集问题,解决采集后数据行列混合存储和压缩的问题,然后形成一个支撑标准sql预防的数据分析库.

大数据分析的5个方面

- - ITeye资讯频道
越来越多的应用涉及到大数据,不幸的是所有大数据的属性,包括数量、速度、多样性等等都是描述了数据库不断增长的复杂性. 那么大数据给我们带来了什么好处呢. 大数据最大的好处在于能够让我们从这些数据中分析出很多智能的、深入的、有价值的信息. 下面我总结了分析大数据的5个方面. Analytic Visualizations(可视化分析).

大数据分析最佳实践

- - 互联网分析
   转自:TTNN   Q先生杰作. 大概是从今年开始,big data一词逐渐成为术语,这跟整个世界的数据爆发当然有关系. 以前,人们喜欢用海量数据这个词,large-scale. 这看上去还是显得有点学术气, 像是BI人自己关起门来说自己的宝贝. 而big data更显通俗,在各行各业都显现出的一种势头,于是产生这个更加简单的词汇,大数据.

大数据分析的分类-转载

- - 人月神话的BLOG
原文:http://www.csdn.net/article/2011-08-15/303101. Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构. 按照数据分析的实时性,分为实时数据分析和离线数据分析两种.

下一代大数据分析技术

- - Parallel Labs
原文发表于《程序员》杂志2013年第2期.. 随着以Hadoop为代表的大数据分析技术的普及,大数据的商业价值得到深入挖掘,并开始在互联网、零售、医疗、物联网等多个行业里成为商业变革的主导力量. Facebook最近就发布了名为Graph Search的新型社交搜索产品,基于海量的社交关系网络及“Likes”行为数据,为用户提供个性化的社交搜索服务,该产品被认为将是Google搜索业务的重要竞争对手.

基于mdrill的大数据分析

- - CSDN博客云计算推荐文章
     数据越来越多,传统的关系型数据库支撑不了,分布式数据仓库又非常贵. 几十亿、几百亿、甚至几千亿的数据量,如何才能高效的分析. mdrill是由阿里妈妈开源的一套数据的软件,针对TB级数据量,能够仅用10台机器,达到秒级响应,数据能实时导入,可以对任意的维度进行组合与过滤.     mdrill作为数据在线分析处理软件,可以在几秒到几十秒的时间,分析百亿级别的任意组合维度的数据.

大数据分析查询引擎Impala

- - 标点符
Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数据. 已有的Hive系统虽然也提供了SQL语义,但由于Hive底层执行使用的是MapReduce引擎,仍然是一个批处理过程,难以满足查询的交互性. 相比之下,Impala的最大特点也是最大卖点就是它的快速.

大数据下的数据分析平台架构

- vento - 《程序员》杂志官网
随着互联网、移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. 作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”. 多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Hadoop平台之上.