大数据分析查询引擎Impala

标签: 大数据 查询引擎 | 发表时间:2015-11-08 22:57 | 作者:标点符
出处:http://www.biaodianfu.com

Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数据。已有的Hive系统虽然也提供了SQL语义,但由于Hive底层执行使用的是MapReduce引擎,仍然是一个批处理过程,难以满足查询的交互性。相比之下,Impala的最大特点也是最大卖点就是它的快速。在介绍Impala之前需要先介绍Google的Dremel系统,因为Impala最开始是参照 Dremel系统进行设计的。

Dremel是Google的交互式数据分析系统,它构建于Google的GFS(Google File System)等系统之上,支撑了Google的数据分析服务BigQuery等诸多服务。Dremel的技术亮点主要有两个:一是实现了嵌套型数据的列存储;二是使用了多层查询树,使得任务可以在数千个节点上并行执行和聚合结果。列存储在关系型数据库中并不陌生,它可以减少查询时处理的数据量,有效提升查询效率。Dremel的列存储的不同之处在于它针对的并不是传统的关系数据,而是嵌套结构的数据。Dremel可以将一条条的嵌套结构的记录转换成列存储形式,查询时根据查询条件读取需要的列,然后进行条件过滤,输出时再将列组装成嵌套结构的记录输出,记录的正向和反向转换都通过高效的状态机实现。另外,Dremel的多层查询树则借鉴了分布式搜索引擎的设计,查询树的根节点负责接收查询,并将查询分发到下一层节点,底层节点负责具体的数据读取和查询执行,然后将结果返回上层节点。

impala-1

Impala是Cloudera在受到Google的Dremel启发下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala其实就是Hadoop的Dremel,Impala使用的列存储格式是Parquet。Parquet实现了Dremel中的列存储,未来还将支持 Hive并添加字典编码、游程编码等功能。Impala的系统架构如图所示。Impala使用了Hive的SQL接口(包括SELECT、 INSERT、Join等操作),但目前只实现了Hive的SQL语义的子集(例如尚未对UDF提供支持),表的元数据信息存储在Hive的 Metastore中。StateStore是Impala的一个子服务,用来监控集群中各个节点的健康状况,提供节点注册、错误检测等功能。 Impala在每个节点运行了一个后台服务Impalad,Impalad用来响应外部请求,并完成实际的查询处理。Impalad主要包含Query Planner、Query Coordinator和Query Exec Engine三个模块。QueryPalnner接收来自SQL APP和ODBC的查询,然后将查询转换为许多子查询,Query Coordinator将这些子查询分发到各个节点上,由各个节点上的Query Exec Engine负责子查询的执行,最后返回子查询的结果,这些中间结果经过聚集之后最终返回给用户。

Impala主要由Impalad, State Store和CLI组成。

impala-2

Impalad

与DataNode运行在同一节点上,由Impalad进程表示,它接收客户端的查询请求(接收查询请求的Impalad为Coordinator,Coordinator通过JNI调用java前端解释SQL查询语句,生成查询计划树,再通过调度器把执行计划分发给具有相应数据的其它Impalad进行执行),读写数据,并行执行查询,并把结果通过网络流式的传送回给Coordinator,由Coordinator返回给客户端。同时Impalad也与State Store保持连接,用于确定哪个Impalad是健康和可以接受新的工作。在Impalad中启动三个ThriftServer: beeswax_server(连接客户端),hs2_server(借用Hive元数据), be_server(Impalad内部使用)和一个ImpalaServer服务。每个impalad实例会接收、规划并调节来自ODBC或Impala Shell等客户端的查询。每个impalad实例会充当一个Worker,处理由其它impalad实例分发出来的查询片段(query fragments)。客户端可以随便连接到任意一个impalad实例,被连接的impalad实例将充当本次查询的协调者(Ordinator),将查询分发给集群内的其它impalad实例进行并行计算。当所有计算完毕时,其它各个impalad实例将会把各自的计算结果发送给充当 Ordinator的impalad实例,由这个Ordinator实例把结果返回给客户端。每个impalad进程可以处理多个并发请求。

Impala State Store

跟踪集群中的Impalad的健康状态及位置信息,由statestored进程表示,它通过创建多个线程来处理Impalad的注册订阅和与各Impalad保持心跳连接,各Impalad都会缓存一份State Store中的信息,当State Store离线后(Impalad发现State Store处于离线时,会进入recovery模式,反复注册,当State Store重新加入集群后,自动恢复正常,更新缓存数据)因为Impalad有State Store的缓存仍然可以工作,但会因为有些Impalad失效了,而已缓存数据无法更新,导致把执行计划分配给了失效的Impalad,导致查询失败。

  • 用于协调各个运行impalad的实例之间的信息关系,Impala正是通过这些信息去定位查询请求所要的数据。换句话说,state store的作用主要为跟踪各个impalad实例的位置和状态,让各个impalad实例以集群的方式运行起来。
  • 与 HDFS的NameNode不一样,虽然State Store一般只安装一份,但一旦State Store挂掉了,各个impalad实例却仍然会保持集群的方式处理查询请求,只是无法将各自的状态更新到State Store中,如果这个时候新加入一个impalad实例,则新加入的impalad实例不为现有集群中的其他impalad实例所识别(事实上,经笔者测试,如果impalad启动在statestored之后,根本无法正常启动,因为impalad启动时是需要指定statestored的主机信息的)。然而,State Store一旦重启,则所有State Store所服务的各个impalad实例(包括state store挂掉期间新加入的impalad实例)的信息(由impalad实例发给state store)都会进行重建。

CLI (Impala shell)

提供给用户查询使用的命令行工具(Impala Shell使用python实现),同时Impala还提供了Hue,JDBC, ODBC使用接口。该客户端工具提供一个交互接口,供使用者发起数据查询或管理任务,比如连接到impalad。这些查询请求会传给ODBC这个标准查询接口。说白了,就是一个命令行客户端。

与Hive的关系

Impala与Hive都是构建在Hadoop之上的数据查询工具各有不同的侧重适应面,但从客户端使用来看Impala与Hive有很多的共同之处,如数据表元数据、ODBC/JDBC驱动、SQL语法、灵活的文件格式、存储资源池等。Impala与Hive在Hadoop中的关系下图所示。Hive适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据分析人员提供了快速实验、验证想法的大数据分析工具。可以先使用hive进行数据转换处理,之后使用Impala在Hive处理后的结果数据集上进行快速的数据分析。

hive-impala

SQL 支持度:

支持SQL92中的大部分select语句, 以及SQL2003标准中的分析函数。 不支持DELETE和UPDATE, 但是支持批量装载数据(insert into select, LOAD DATA) 和批量删除数据(drop partition)。除此之外, 用户也可直接操作HDFS文件实现数据装载和清理。

查询执行

impalad分为frontend和backend两个层次, frondend用java实现(通过JNI嵌入impalad), 负责查询计划生成, 而backend用C++实现, 负责查询执行。

impalad

frontend生成查询计划分为两个阶段:(1)生成单机查询计划,单机执行计划与关系数据库执行计划相同,所用查询优化方法也类似。(2)生成分布式查询计划。 根据单机执行计划, 生成真正可执行的分布式执行计划,降低数据移动, 尽量把数据和计算放在一起。

impala-3

上图是SQL查询例子, 该SQL的目标是在三表join的基础上算聚集, 并按照聚集列排序取topN。 impala的查询优化器支持代价模型: 利用表和分区的cardinality,每列的distinct值个数等统计数据, impala可估算执行计划代价, 并生成较优的执行计划。 上图左边是frontend查询优化器生成的单机查询计划, 与传统关系数据库不同, 单机查询计划不能直接执行, 必须转换成如图右半部分所示的分布式查询计划。 该分布式查询计划共分成6个segment(图中彩色无边框圆角矩形), 每个segment是可以被单台服务器独立执行的计划子树。

impala支持两种分布式join方式, 表广播和哈希重分布:表广播方式保持一个表的数据不动, 将另一个表广播到所有相关节点(图中t3); 哈希重分布的原理是根据join字段哈希值重新分布两张表数据(譬如图中t1和t2)。分布式计划中的聚集函数分拆为两个阶段执行。第一步针对本地数据进行分组聚合(Pre-AGG)以降低数据量, 并进行数据重分步, 第二步, 进一步汇总之前的聚集结果(mergeAgg)计算出最终结果。 与聚集函数类似, topN也是分为两个阶段执行, (1)本地排序取topN,以降低数据量; (2) merge sort得到最终topN结果。

Backend从frontend接收plan segment并执行, 执行性能非常关键,impala采取的查询性能优化措施有

  • 向量执行。 一次getNext处理一批记录, 多个操作符可以做pipeline。
  • LLVM编译执行, CPU密集型查询效率提升5倍以上。
  • IO本地化。 利用HDFS short-circuit local read功能,实现本地文件读取
  • Parquet列存,相比其他格式性能最高提升5倍。

资源管理

impala通常与MR等离线任务运行在一个集群上, 通过YARN统一管理资源, 如何同时满足交互式查询和离线查询两种需求具有较大挑战性。 YARN通过全局唯一的Resource Mananger调度资源, 好处是RM拥有整个集群全局信息,能做出更好调度决策, 缺点是资源分配的性能不足。 Impala每个查询都需要分配资源, 当每秒查询数上千时, YARN资源分配的响应时间变的很长, 影响到查询性能。 目前通过两个措施解决这个问题:(1)引入快速、非集中式的查询准入机制, 控制查询并发度。(2)LLAM(low latency application master)通过缓存资源, 批量分配,增量分配等方式实现降低资源分配延时

Impala 相对于Hive所使用的优化技术

  • 没有使用MapReduce进行并行计算,虽然MapReduce是非常好的并行计算框架,但它更多的面向批处理模式,而不是面向交互式的SQL执行。与MapReduce相比:Impala把整个查询分成一执行计划树,而不是一连串的MapReduce任务,在分发执行计划后,Impala使用拉式获取数据的方式获取结果,把结果数据组成按执行树流式传递汇集,减少的了把中间结果写入磁盘的步骤,再从磁盘读取数据的开销。Impala使用服务的方式避免每次执行查询都需要启动的开销,即相比Hive没了MapReduce启动时间。
  • 使用LLVM产生运行代码,针对特定查询生成特定代码,同时使用Inline的方式减少函数调用的开销,加快执行效率。
  • 充分利用可用的硬件指令(2)。
  • 更好的IO调度,Impala知道数据块所在的磁盘位置能够更好的利用多磁盘的优势,同时Impala支持直接数据块读取和本地代码计算checksum。
  • 通过选择合适的数据存储格式可以得到最好的性能(Impala支持多种存储格式)。
  • 最大使用内存,中间结果不写磁盘,及时通过网络以stream的方式传递。

Impala 与Hive的异同

相同点:

  • 数据存储:使用相同的存储数据池都支持把数据存储于HDFS, HBase。
  • 元数据:两者使用相同的元数据。
  • SQL解释处理:比较相似都是通过词法分析生成执行计划。

不同点:

执行计划:

  • Hive: 依赖于MapReduce执行框架,执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。
  • Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。

数据流:

  • Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。
  • Impala: 采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。

内存使用:

  • Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。
  • Impala: 在遇到内存放不下数据时,当前版本0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一定的限制,最好还是与Hive配合使用。Impala在多个阶段之间利用网络传输数据,在执行过程不会有写磁盘的操作(insert除外)。

调度:

  • Hive: 任务调度依赖于Hadoop的调度策略。
  • Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。

容错:

  • Hive: 依赖于Hadoop的容错能力。
  • Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败,再查一次就好了,再查一次的成本很低)。但从整体来看,Impala是能很好的容错,所有的Impalad是对等的结构,用户可以向任何一个Impalad提交查询,如果一个Impalad失效,其上正在运行的所有Query都将失败,但用户可以重新提交查询由其它Impalad代替执行,不会影响服务。对于State Store目前只有一个,但当State Store失效,也不会影响服务,每个Impalad都缓存了State Store的信息,只是不能再更新集群状态,有可能会把执行任务分配给已经失效的Impalad执行,导致本次Query失败。

适用面:

  • Hive: 复杂的批处理查询任务,数据转换任务。
  • Impala:实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。

Impala 的优缺点

优点:

  • 支持SQL查询,快速查询大数据。
  • 可以对已有数据进行查询,减少数据的加载,转换。
  • 多种存储格式可以选择(Parquet, Text, Avro, RCFile, SequeenceFile)。
  • 可以与Hive配合使用。

缺点:

  • 不支持用户定义函数UDF。
  • 不支持text域的全文搜索。
  • 不支持Transforms。
  • 不支持查询期的容错。
  • 对内存要求高。

在Cloudera的测试中,Impala的查询效率比Hive有数量级的提升。从技术角度上来看,Impala之所以能有好的性能,主要有以下几方面的原因。

  • Impala不需要把中间结果写入磁盘,省掉了大量的I/O开销。
  • 省掉了MapReduce作业启动的开销。MapReduce启动task的速度很慢(默认每个心跳间隔是3秒钟),Impala直接通过相应的服务进程来进行作业调度,速度快了很多。
  • Impala完全抛弃了MapReduce这个不太适合做SQL查询的范式,而是像Dremel一样借鉴了MPP并行数据库的思想另起炉灶,因此可做更多的查询优化,从而省掉不必要的shuffle、sort等开销。
  • 通过使用LLVM来统一编译运行时代码,避免了为支持通用编译而带来的不必要开销。
  • 用C++实现,做了很多有针对性的硬件优化,例如使用SSE指令。
  • 使用了支持Data locality的I/O调度机制,尽可能地将数据和计算分配在同一台机器上进行,减少了网络开销。

虽然Impala是参照Dremel来实现的,但它也有一些自己的特色,例如Impala不仅支持Parquet格式,同时也可以直接处理文本、SequenceFile等Hadoop中常用的文件格式。另外一个更关键的地方在于,Impala是开源的,再加上Cloudera在Hadoop领域的领导地位,其生态圈有很大可能会在将来快速成长。

可以预见,在不久的未来,Impala很可能像之前的Hadoop和Hive一样在大数 据处理领域大展拳脚。Cloudera自己也说期待未来Impala能完全取代Hive。当然,用户从Hive上迁移到Impala上来是需要时间的。需要说明的是,Impala并不是用来取代已有的MapReduce系统,而是作为MapReduce的一个强力补充。总的来说,Impala适合用来处理输出数据适中或比较小的查询,而对于大数据量的批处理任务,MapReduce依然是更好的选择。另外一个消息是,Cloudera里负责Impala的架构师Marcel Komacker就曾在Google负责过F1系统的查询引擎开发,可见Google确实为大数据的流行出钱出力。

Impala 与Shark,Drill等的比较

开源组织Apache也发起了名为Drill的项目来实现Hadoop上的Dremel,目前该项目正在开发当中,相关的文档和代码还不多,可以说暂时还未对Impala构成足够的威胁。从Quora上的问答来看,Cloudera有7-8名工程师全职在Impala项目上,而相比之下Drill目前的动作稍显迟钝。具体来说,截止到2012年10月底,Drill的代码库里实现了query parser, plan parser,及能对JSON格式的数据进行扫描的plan evaluator;而Impala同期已经有了一个比较完毕的分布式query execution引擎,并对HDFS和HBase上的数据读入,错误检测,INSERT的数据修改,LLVM动态翻译等都提供了支持。当然,Drill作为Apache的项目,从一开始就避免了某个vendor的一家独大,而且对所有Hadoop流行的发行版都会做相应的支持,不像Impala只支持Cloudera自己的发行版CDH。从长远来看,谁会占据上风还真不一定。

除此之外,加州伯克利大学AMPLab也开发了名为Shark的大数据分析系统。从长远目标来看,Shark想成为一个既支持大数据SQL查询,又能支持高级数据分析任务的一体化数据处理系统。从技术实现的角度上来看,Shark基于Scala语言的算子推导实现了良好的容错机制,因此对失败了的长任务和短任务都能从上一个“快照点”进行快速恢复。相比之下,Impala由于缺失足够强大的容错机制,其上运行的任务一旦失败就必须“从头来过”,这样的设计必然会在性能上有所缺失。而且Shark是把内存当作第一类的存储介质来做的系统设计,所以在处理速度上也会有一些优势。实际上,AMPLab最近对Hive,Impala,Shark及Amazon采用的商业MPP数据库Redshift进行了一次对比试验,在Scan Query,Aggregation Query和Join Query三种类型的任务中对它们进行了比较。图2就是AMPLab报告中Aggregation Query的性能对比。在图中我们可以看到,商业版本的Redshift的性能是最好的, Impala和Shark则各有胜负,且两者都比Hive的性能高出了一大截。

impala-drill

其实对大数据分析的项目来说,技术往往不是最关键的。例如Hadoop中的MapReduce和HDFS都是源于Google,原创性较少。事实上,开源项目的生态圈,社区,发展速度等,往往在很大程度上会影响Impala和Shark等开源大数据分析系统的发展。就像Cloudera一开始就决定会把Impala开源,以期望利用开源社区的力量来推广这个产品;Shark也是一开始就开源了出来,更不用说Apache的Drill更是如此。说到底还是谁的生态系统更强的问题。技术上一时的领先并不足以保证项目的最终成功。虽然最后那一款产品会成为事实上的标准还很难说,但是,我们唯一可以确定并坚信的一点是,大数据分析将随着新技术的不断推陈出新而不断普及开来,这对用户永远都是一件幸事。举个例子,如果读者注意过下一代Hadoop(YARN)的发展的话就会发现,其实YARN已经支持MapReduce之外的计算范式(例如Shark,Impala等),因此将来Hadoop将可能作为一个兼容并包的大平台存在,在其上提供各种各样的数据处理技术,有应对秒量级查询的,有应对大数据批处理的,各种功能应有尽有,满足用户各方面的需求。

未来展望

其实除了Impala,Shark,Drill这样的开源方案外,像Oracle,EMC等传统厂商也没在坐以待毙等着自己的市场被开源软件侵吞。像EMC就推出了HAWQ系统,并号称其性能比之Impala快上十几倍,而前面提到的Amazon的Redshift也提供了比Impala更好的性能。虽然说开源软件因为其强大的成本优势而拥有极其强大的力量,但是传统数据库厂商仍会尝试推出性能、稳定性、维护服务等指标上更加强大的产品与之进行差异化竞争,并同时参与开源社区、借力开源软件来丰富自己的产品线、提升自己的竞争力,并通过更多的高附加值服务来满足某些消费者需求。毕竟,这些厂商往往已在并行数据库等传统领域积累了大量的技术和经验,这些底蕴还是非常深厚的。甚至现在还有像NuoDB(一个创业公司)这样号称即支持ACID,又有Scalability的NewSQL系统出来。总的来看,未来的大数据分析技术将会变得越来越成熟、越来越便宜、越来越易用;相应的,用户将会更容易更方便地从自己的大数据中挖掘出有价值的商业信息。

参考资料

  • http://impala.io/

相关 [大数据 分析 引擎] 推荐:

大数据分析查询引擎Impala

- - 标点符
Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数据. 已有的Hive系统虽然也提供了SQL语义,但由于Hive底层执行使用的是MapReduce引擎,仍然是一个批处理过程,难以满足查询的交互性. 相比之下,Impala的最大特点也是最大卖点就是它的快速.

Impala:新一代开源大数据分析引擎

- - Parallel Labs
原文发表在《程序员》杂志2013年第8期,略有删改.  大数据处理是云计算中非常重要的问题,自Google公司提出MapReduce分布式处理框架以来,以Hadoop为代表的开源软件受到越来越多公司的重视和青睐. 以Hadoop为基础,之后的HBase,Hive,Pig等系统如雨后春笋般的加入了Hadoop的生态系统中.

大数据-推荐引擎

- - 人月神话的BLOG
推荐引擎在当前电商平台用的相当多,本文简单理解下常见的几张推荐方式. 首先说明下大数据用户画像可以用于针对性营销和单品推荐,但是即使没做用户画像也可以进行商品推荐. 推荐引擎是不是为不同的用户推荐不同的数据根据这个指标,推荐引擎可以分为基于大众行为的推荐引擎和个性化推荐引擎. 大众行为的推荐引擎,对每个用户都给出同样的推荐,这些推荐可以是静态的由系统管理员人工设定的,或者基于系统所有用户的反馈统计计算出的当下比较流行的物品.

分布式大数据多维分析(OLAP)引擎:Apache Kylin 在百度地图的实践

- - leejun2005的个人页面
百度地图开放平台业务部数据智能组主要负责百度地图内部相关业务的大数据计算分析,处理日常百亿级规模数据,为不同业务提供单条SQL毫秒级响应的OLAP多维分析查询服务. 对于Apache Kylin在实际生产环境中的应用,在国内,百度地图数据智能组是最早的一批实践者之一. Apache Kylin在2014年11月开源,当时,我们团队正需要搭建一套完整的大数据OLAP分析计算平台,用来提供百亿行级数据单条SQL毫秒到秒级的多维分析查询服务,在技术选型过程中,我们参考了Apache Drill、Presto、Impala、Spark SQL、Apache Kylin等.

Airbnb如何打造大数据引擎

- - IT经理网
在推动旅游业的大数据应用方面,没有企业比Airbnb做得更多,走得更远…. 与大多数互联网公司一样,旅行房屋短期租赁网站Airbnb也希望通过分析海量数据提升用户体验和业务营收. Gigaom最近 撰文介绍了Airbnb如何在亚马逊云的基础上打造大数据基础架构,并将数据分析作为产品和业务决策的基础,IT经理网编译整理如下:.

谈大数据分析

- - 人月神话的BLOG
对于数据分析层,我们可以看到,其核心重点是针对海量数据形成一个分布式可弹性伸缩的,高查询性能的,支持标准sql语法的一个ODS库. 我们看到对于Hive,impala,InfoBright更多的都是解决这个层面的问题,即解决数据采集问题,解决采集后数据行列混合存储和压缩的问题,然后形成一个支撑标准sql预防的数据分析库.

大数据分析的5个方面

- - ITeye资讯频道
越来越多的应用涉及到大数据,不幸的是所有大数据的属性,包括数量、速度、多样性等等都是描述了数据库不断增长的复杂性. 那么大数据给我们带来了什么好处呢. 大数据最大的好处在于能够让我们从这些数据中分析出很多智能的、深入的、有价值的信息. 下面我总结了分析大数据的5个方面. Analytic Visualizations(可视化分析).

大数据分析最佳实践

- - 互联网分析
   转自:TTNN   Q先生杰作. 大概是从今年开始,big data一词逐渐成为术语,这跟整个世界的数据爆发当然有关系. 以前,人们喜欢用海量数据这个词,large-scale. 这看上去还是显得有点学术气, 像是BI人自己关起门来说自己的宝贝. 而big data更显通俗,在各行各业都显现出的一种势头,于是产生这个更加简单的词汇,大数据.

大数据分析的分类-转载

- - 人月神话的BLOG
原文:http://www.csdn.net/article/2011-08-15/303101. Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构. 按照数据分析的实时性,分为实时数据分析和离线数据分析两种.

下一代大数据分析技术

- - Parallel Labs
原文发表于《程序员》杂志2013年第2期.. 随着以Hadoop为代表的大数据分析技术的普及,大数据的商业价值得到深入挖掘,并开始在互联网、零售、医疗、物联网等多个行业里成为商业变革的主导力量. Facebook最近就发布了名为Graph Search的新型社交搜索产品,基于海量的社交关系网络及“Likes”行为数据,为用户提供个性化的社交搜索服务,该产品被认为将是Google搜索业务的重要竞争对手.