redis应用场景

标签: redis 应用 | 发表时间:2015-12-14 19:33 | 作者:shyboy0358
出处:http://www.iteye.com
Redis在很多方面与其他数据库解决方案不同:它使用内存提供主存储支持,而仅使用硬盘做持久性的存储;它的数据模型非常独特,用的是单线程。另一个大区别在于,你可以在开发环境中使用Redis的功能,但却不需要转到Redis。
转向Redis当然也是可取的,许多开发者从一开始就把Redis作为首选数据库;但设想如果你的开发环境已经搭建好, 应用已经在上面运行了,那么更换数据库框架显然不那么容易。另外在一些需要大容量数据集的应用,Redis也并不适合,因为它的数据集不会超过系统可用的 内存。所以如果你有大数据应用,而且主要是读取访问模式,那么Redis并不是正确的选择。

        然而我喜欢Redis的一点就是你可以把它融入到你的系统中来,这就能够解决很多问题,比如那些你现有的数据库处理起来感到缓慢的任务。这些你就可以通过 Redis来进行优化,或者为应用创建些新的功能。在本文中,我就想探讨一些怎样将Redis加入到现有的环境中,并利用它的原语命令等功能来解决 传统环境中碰到的一些常见问题。在这些例子中,Redis都不是作为首选数据库。

1、显示最新的项目列表

下面这个语句常用来显示最新项目,随着数据多了,查询毫无疑问会越来越慢。

SELECT * FROM foo WHERE ... ORDER BY time DESC LIMIT 10  
        在Web应用中,“列出最新的回复”之类的查询非常普遍,这通常会带来可扩展性问题。这令人沮丧,因为项目本来就是按这个顺序被创建的,但要输出这个顺序却不得不进行排序操作。

        类似的问题就可以用Redis来解决。比如说,我们的一个Web应用想要列出用户贴出的最新20条评论。在最新的评论边上我们有一个“显示全部”的链接,点击后就可以获得更多的评论。

        我们假设数据库中的每条评论都有一个唯一的递增的ID字段。

        我们可以使用分页来制作主页和评论页,使用Redis的模板,每次新评论发表时,我们会将它的ID添加到一个Redis列表:

LPUSH latest.comments <ID>  
       我们将列表裁剪为指定长度,因此Redis只需要保存最新的5000条评论:

       LTRIM latest.comments 0 5000

      每次我们需要获取最新评论的项目范围时,我们调用一个函数来完成(使用伪代码):

FUNCTION get_latest_comments(start, num_items): 
    id_list = redis.lrange("latest.comments",start,start+num_items - 1) 
    IF id_list.length < num_items 
        id_list = SQL_DB("SELECT ... ORDER BY time LIMIT ...") 
    END 
    RETURN id_list 
END 

      这里我们做的很简单。在Redis中我们的最新ID使用了常驻缓存,这是一直更新的。但是我们做了限制不能超过5000个ID,因此我们的获取ID函数会一直询问Redis。只有在start/count参数超出了这个范围的时候,才需要去访问数据库。

        我们的系统不会像传统方式那样“刷新”缓存,Redis实例中的信息永远是一致的。SQL数据库(或是硬盘上的其他类型数据库)只是在用户需要获取“很远”的数据时才会被触发,而主页或第一个评论页是不会麻烦到硬盘上的数据库了。

2、删除与过滤

      我们可以使用LREM来删除评论。如果删除操作非常少,另一个选择是直接跳过评论条目的入口,报告说该评论已经不存在。

       有些时候你想要给不同的列表附加上不同的过滤器。如果过滤器的数量受到限制,你可以简单的为每个不同的过滤器使用不同的Redis列表。毕竟每个列表只有5000条项目,但Redis却能够使用非常少的内存来处理几百万条项目。

3、排行榜相关

      另一个很普遍的需求是各种数据库的数据并非存储在内存中,因此在按得分排序以及实时更新这些几乎每秒钟都需要更新的功能上数据库的性能不够理想。

      典型的比如那些在线游戏的排行榜,比如一个Facebook的游戏,根据得分你通常想要:

         - 列出前100名高分选手

         - 列出某用户当前的全球排名

      这些操作对于Redis来说小菜一碟,即使你有几百万个用户,每分钟都会有几百万个新的得分。

      模式是这样的,每次获得新得分时,我们用这样的代码:

      ZADD leaderboard  <score>  <username>

     你可能用userID来取代username,这取决于你是怎么设计的。

      得到前100名高分用户很简单:ZREVRANGE leaderboard 0 99。

      用户的全球排名也相似,只需要:ZRANK leaderboard <username>。


4、按照用户投票和时间排序

      排行榜的一种常见变体模式就像Reddit或Hacker News用的那样,新闻按照类似下面的公式根据得分来排序:

       score = points / time^alpha

      因此用户的投票会相应的把新闻挖出来,但时间会按照一定的指数将新闻埋下去。下面是我们的模式,当然算法由你决定。

      模式是这样的,开始时先观察那些可能是最新的项目,例如首页上的1000条新闻都是候选者,因此我们先忽视掉其他的,这实现起来很简单。

      每次新的新闻贴上来后,我们将ID添加到列表中,使用LPUSH + LTRIM,确保只取出最新的1000条项目。

      有一项后台任务获取这个列表,并且持续的计算这1000条新闻中每条新闻的最终得分。计算结果由ZADD命令按照新的顺序填充生成列表,老新闻则被清除。这里的关键思路是排序工作是由后台任务来完成的。


5、处理过期项目

      另一种常用的项目排序是按照时间排序。我们使用unix时间作为得分即可。

      模式如下:

       - 每次有新项目添加到我们的非Redis数据库时,我们把它加入到排序集合中。这时我们用的是时间属性,current_time和time_to_live。

       - 另一项后台任务使用ZRANGE…SCORES查询排序集合,取出最新的10个项目。如果发现unix时间已经过期,则在数据库中删除条目。


6、计数

       Redis是一个很好的计数器,这要感谢INCRBY和其他相似命令。

       我相信你曾许多次想要给数据库加上新的计数器,用来获取统计或显示新信息,但是最后却由于写入敏感而不得不放弃它们。

       好了,现在使用Redis就不需要再担心了。有了原子递增(atomic increment),你可以放心的加上各种计数,用GETSET重置,或者是让它们过期。

       例如这样操作:

         INCR user:<id> EXPIRE

         user:<id> 60

       你可以计算出最近用户在页面间停顿不超过60秒的页面浏览量,当计数达到比如20时,就可以显示出某些条幅提示,或是其它你想显示的东西。

7、特定时间内的特定项目

        另一项对于其他数据库很难,但Redis做起来却轻而易举的事就是统计在某段特点时间里有多少特定用户访问了某个特定资源。比如我想要知道某些特定的注册用户或IP地址,他们到底有多少访问了某篇文章。

      每次我获得一次新的页面浏览时我只需要这样做:

       SADD page:day1:<page_id> <user_id>

      当然你可能想用unix时间替换day1,比如time()-(time()%3600*24)等等。

      想知道特定用户的数量吗?只需要使用SCARD page:day1:<page_id>。

       需要测试某个特定用户是否访问了这个页面?SISMEMBER page:day1:<page_id>。



8、实时分析正在发生的情况,用于数据统计与防止垃圾邮件等

        我们只做了几个例子,但如果你研究Redis的命令集,并且组合一下,就能获得大量的实时分析方法,有效而且非常省力。使用Redis原语命令,更容易实施垃圾邮件过滤系统或其他实时跟踪系统。


9、Pub/Sub

       Redis的Pub/Sub非常非常简单,运行稳定并且快速。支持模式匹配,能够实时订阅与取消频道。

10、队列

        你应该已经注意到像list push和list pop这样的Redis命令能够很方便的执行队列操作了,但能做的可不止这些:比如Redis还有list pop的变体命令,能够在列表为空时阻塞队列。

       现 代的互联网应用大量地使用了消息队列(Messaging)。消息队列不仅被用于系统内部组件之间的通信,同时也被用于系统跟其它服务之间的交互。消息队 列的使用可以增加系统的可扩展性、灵活性和用户体验。非基于消息队列的系统,其运行速度取决于系统中最慢的组件的速度(注:短板效应)。而基于消息队列可 以将系统中各组件解除耦合,这样系统就不再受最慢组件的束缚,各组件可以异步运行从而得以更快的速度完成各自的工作。

    此外,当服务器处在高并发操作的时候,比如频繁地写入日志文件。可以利用消息队列实现异步处理。从而实现高性能的并发操作。



11、缓存

        Redis的缓存部分值得写一篇新文章,我这里只是简单的说一下。Redis能够替代memcached,让你的缓存从只能存储数据变得能够更新数据,因此你不再需要每次都重新生成数据了。

已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [redis 应用] 推荐:

Redis应用场景

- - CSDN博客架构设计推荐文章
Redis最为常用的数据类型主要有以下:. 在具体描述这几种数据类型之前,我们先通过一张图了解下Redis内部内存管理中是如何描述这些不同数据类型的:.          首先Redis内部使用一个redisObject对象来表示所有的key和value,redisObject最主要的信息如上图所示:.

redis应用场景

- - 数据库 - ITeye博客
Redis在很多方面与其他数据库解决方案不同:它使用内存提供主存储支持,而仅使用硬盘做持久性的存储;它的数据模型非常独特,用的是单线程. 另一个大区别在于,你可以在开发环境中使用Redis的功能,但却不需要转到Redis. 转向Redis当然也是可取的,许多开发者从一开始就把Redis作为首选数据库;但设想如果你的开发环境已经搭建好, 应用已经在上面运行了,那么更换数据库框架显然不那么容易.

[转]Redis作者谈Redis应用场景

- notsobad - heiyeluren的blog(黑夜路人的开源世界)
文章来源:http://blog.nosqlfan.com/html/2235.html. 毫无疑问,Redis开创了一种新的数据存储思路,使用Redis,我们不用在面对功能单调的数据库时,把精力放在如何把大象放进冰箱这样的问题上,而是利用Redis灵活多变的数据结构和数据操作,为不同的大象构建不同的冰箱.

Redis应用场景(转)

- - 开源软件 - ITeye博客
转自: http://blog.csdn.net/hguisu/article/details/8836819#t11.  MySql+Memcached架构的问题.   实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题:.

Redis 在新浪微博中的应用

- - 大CC
Redis 在新浪微博中的应用. 支持strings, hashes, lists, sets, sorted sets. string是很好的存储方式,用来做计数存储. sets用于建立索引库非常棒;. K-V 存储 vs K-V 缓存. 新浪微博目前使用的98%都是持久化的应用,2%的是缓存,用到了600+服务器.

Mongodb与Redis应用指标对比

- - CSDN博客数据库推荐文章
    MongoDB和Redis都是NoSQL,采用结构型数据存储. 二者在使用场景中,存在一定的区别,这也主要由于. 二者在内存映射的处理过程,持久化的处理方法不同. MongoDB建议集群部署,更多的考虑到集群方案,Redis. 更偏重于进程顺序写入,虽然支持集群,也仅限于主-从模式. 丰富的数据表达、索引;最类似于关系数据库,支持丰富的查询语言.

Redis在新浪微博中的应用

- - 丕子
感觉国内对Redis玩的最转的就是新浪微博了,最近也在研究和使用Redis,准备把某些数据放到redis中. 看了几篇新浪微博的文章,挺受启发的,特别是对Redis集群扩容、内存容量配置等经验的介绍. Redis计数在新浪微博的应用. 微博关系服务与Redis的故事. Redis 在新浪微博中的应用.

Redis应用场景及产品定位

- - 互联网 - ITeye博客
关键字:Redis应用场景及产品定位. 传统MySQL+ Memcached架构遇到的问题. 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题:.     MySQL需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间.

基于twemproxy的redis分布式应用

- - 数据库 - ITeye博客
根据以往的测试结论,单个redis的实例的内存总量最好控制在8G以内(最大不能超过20G),而实际上应用对redis的内存的需求可能会远远大于8G,因此需要一个保持redis server性能不下降,但可以有效扩充redis server的容量的方案. twemproxy是一个恰当的选择. twemproxy,也叫nutcraker.

Redis的11种web应用场景 - 51CTO.COM

- -
【51CTO精选译文】在“怎样让Redis在你的系统中发挥作用”一文中,Salvatore 'antirez’ Sanfilippo告诉我们如何利用Redis独有的数据结构处理能力来解决一些常见问题. 一些Redis原语命令比如LPUSH、LTRIM和LREM等等能够用来帮助开发者完成需要的任务——这些任务在传统的数据库存储中非常困难或缓慢.