干货推荐|数据可视化的五个步骤

标签: 交互体验 中阶 干货 数据可视化 | 发表时间:2016-01-15 08:46 | 作者:米可
出处:http://www.woshipm.com

5gebuzou

数据被称作是最新的商业原材料「21世纪的石油」。商业领域、研究领域、技术发展领域使用的数据总量非常巨大,并持续增长。就Elsevier而言,每年从ScienceDirect下载的文章有7亿篇,Scopus上的机构档案有8万个、研究人员档案有 1 千 3 百万,Mendeley上的研究人员档案有 3 百万。对于用户来说,从这个数据海洋中抓到关键信息越来越难。

许多先进的可视化方式(如:网络图、3D 建模、堆叠地图)被用于特定用途,例如 3D 医疗影像、模拟城市交通、救灾监督。但无论一个可视化项目有多复杂,可视化的目的是帮助读者识别所分析的数据中的一种模式或趋势,而不是仅仅给他们提供冗长的描述,诸如:“ 2000 年 A 的利润比 B 高出 2.9 % ,尽管 2001 年 A 的利润增长了 25 % ,但 2001 年利润比 B 低 3.5 % ”。出色的可视化项目应该总结信息,并把信息组织起来,让读者的注意力集中于关键点。

对于 Elsevier’s Analytical Services 的项目而言,我们一直在寻找提升数据分析和可视化的方式。例如,在我们对于研究表现的分析中有大量关于研究合作的数据;我们为 Science Europe 提供的报告(Comparative Benchmarking of European and US Research Collaboration and Researcher Mobility) 包含跨州合作以及国际合作的数据,这些数据不适合直接用二维表和X-Y图展示。

为了探索数据背后的故事,我们使用了网络关系图来识别国家间的合作,并了解每个合作关系的影响。

本文提供一份包含五个步骤的数据可视化指南,为想用表格、图形来传播观察结果、解读分析结果的人士提供帮助。要记住,建立好的可视化项目是一个反复迭代的过程。

第1步-明确问题

开始创建一个可视化项目时,第一步是明确要回答的问题,又或者试着回答下面的问题“这个可视化项目会怎样帮助读者?”

3条数据记录

表 1–数据集中的三条记录

较差的直方图

图1-槽糕的可视化项目并不澄清事实,而是引人困惑。此图中包含太多变量

清晰的问题可以有助于避免数据可视化的一个常见毛病:把不相干的事物放在一起比较。假设我们有这样一个数据集(见表 1 ),其中包含一个机构的作者总数、出版物总数、引用总数和它们特定一年的增长率。

图1是一个糟糕的可视化案例,所有的变量都被包含在一张表格中。在同一张图中绘制出不同类型的多个变量,通常不是个好主意。

注意力分散的读者会被诱导着去比较不相干的变量。

比如,观察出所有机构的作者总数都少于出版物总数,这没有任何意义,又或者发现 Athena University、Bravo University、Delta Institution 三个研究机构的出版物总数依次增长,也没有意义。拥挤的图表难以阅读、难以处理。在有多个 Y 轴时就是如此,哪个变量对应哪个轴通常不清晰。简而言之,槽糕的可视化项目并不澄清事实而是引人困惑。

第2步-从基本的可视化着手

确定可视化项目的目标后,下一步是建立一个基本的图形。它可能是饼图、线图、流程图、散点图、表面图、地图、网络图等等,取决于手头的数据是什么样子。在明确图表该传达的核心信息时,需要明确以下几件事:

  1. 我们试图绘制什么变量?
  2. X 轴和轴代表什么?
  3. 数据点的大小有什么含义吗?
  4. 颜色有什么含义吗?
  5. 我们试图确定与时间有关趋势,还是变量之间的关系?

有些人使用不同类型的图表实现相同目标,但并不推荐这样做。不同类型的数据各自有其最适合的图表类型。

比如,线形图最适合表现与时间有关的趋势,亦或是两个变量的潜在关系。当数据集中的数据点过多时,使用散点图进行可视化会比较容易。

此外,直方图展示数据的分布。直方图的形状可能会根据不同组距改变,见图 2 。(在绘制直方图时,本质是在绘制柱状图来展示特定范围内有多少数据点。这个范围叫做组距。)

直方图

图2-当组距变化,直方图的形状也发生变化。

组距太窄会导致起伏过多,让读者只盯着树木却看不到整个森林。此外,你会发现,在完成下一个步骤以后,你可能会想要修改或更换图表类型。

第3步-确定最能提供信息指标

假设我们有另一个关于某研究机构出版物数量的数据库(见表 2 )。可视化过程中最关键的步骤是充分了解数据库以及每个变量的含义。从表格中可以看出,在 A 领域(Subject A),此机构出版了 633 篇文章,占此机构全部文章的 39% ;相同时间内全球此领域共出版了 27738 篇文章,占全球总量的 44% 。 注意,B 列中的百分比累计超过 100% ,因为有些文章被标记为属于多个领域。

在这个例子中,我们想了解此机构在各个领域发表了多少文章。出版数量是一个有用的指标,不仅如此,与下面这些指标对照会呈现出更多信息:

  • 此领域的研究成果总量( B 列)
  • 此领域的全球活跃程度

由此,我们可以确定一个相对活跃指标,1.0 代表全球平均活跃程度。高于 1.0 代表高于全球水平,低于 1.0 代表低于全球水平。用 B 列的数据除以 D 列,得到这个新的指标,见表 2 。

数据库

表2-用B列的数据除以D列,得到新的指标:相对活跃程度(E栏)。

第4步-选择正确的图表类型

现在我们可以用雷达图来比较相对活跃指数,并着重观察指数最高/最低的研究领域。例如,此机构在 G 领域的相对活跃指数最高( 1.8 ),但是,此领域的全球总量远远小于其他领域(见图 3 )。雷达图的另一个局限是,它暗示各轴之间存在关系,而在本案例中这关系并不存在(各领域并不相互关联)。

雷达图

图3-相对活跃指数雷达图

数据的规范化(如本例中的相对活跃指数)是一个很常见也很有效的数据转换方法,但需要基于帮助读者得出正确结论的目的使用。如在此例中,仅仅发现目标机构对某个小领域非常重视没太大意义。

我们可以把出版量和活跃程度在同一个图表中展示,以理解各领域的活跃程度。使用图 4 的玫瑰图,各块的面积表示文章数量,半径长短表示相对活跃指数。注意在此例中,半径轴是二次的(而图 3 中是典型线性的)。图中可以看出,B 领域十分突出,拥有最大的数量(由面积表示)和最高的相对活跃程度(由半径长度表示)。

玫瑰图

图4-玫瑰图。此图中各块面积表示文章数量,半径长短表示相对活跃指数(E列)。

第5步-将注意力引向关键信息

用肉眼衡量半径长度可能并不容易。由于在本例中,相对活跃指数的 1.0 代表此领域的全球活跃程度,我们可以通过给出 1.0 的参照值来引导读者,见图 5 。这样很容易看出哪些领域的半径超出参考线。

活跃指数的玫瑰图

图5-带有相对活跃指数参考线的玫瑰图

我们还可以使用颜色帮助读者识别出版物最多的领域。如图例所示,一块的颜色深浅由出版物数量决定。为了便于识别,我们还可以把各领域名称作为标签(见图 6 )。

颜色差异的玫瑰图

图6-玫瑰图中的颜色深浅代表出版物数量(颜色越亮,出版物越多)

结论

数据可视化的方法有很多。新的工具和图表类型不断出现,每种都试图创造出比之前更有吸引力、更有利于传播信息的图表。我们的建议是记住以下原则:可视化项目应该去总结关键信息并使之更清晰直白,而不应该令人困惑,或用大量的信息让读者的大脑超载。

 

原作者:Georgin Lau and Lei Pan

翻译:王鹏宇

via:Datartisan数据工匠

原文地址:http://www.36dsj.com/archives/39986


人人都是产品经理微信公众号:woshipm,随时随地,学产品、学运营,听讲座。

相关 [干货 数据 可视化] 推荐:

干货推荐|数据可视化的五个步骤

- - 人人都是产品经理
数据被称作是最新的商业原材料「21世纪的石油」. 商业领域、研究领域、技术发展领域使用的数据总量非常巨大,并持续增长. 就Elsevier而言,每年从ScienceDirect下载的文章有7亿篇,Scopus上的机构档案有8万个、研究人员档案有 1 千 3 百万,Mendeley上的研究人员档案有 3 百万.

数据可视化

- Sillywolf - ISD Webteam

大数据的可视化

- - CSDN博客云计算推荐文章
       现在数据管理面临的一个关键性问题是如何将这些海量的来自于四面八方的非结构化数据可视化. 不管你从事于什么行业或者正在从事于哪一方面的研究,正将是你经常会触及的问题. 最近,埃里克•奥彭肖和JR里根做客了商务博客的“金融时代”专栏,讨论的主题为“大数据可视化是‘大数据’的关键机会”,分析了今天大数据的使用者们面临的可视化问题,以及公司为应对这个挑战而付诸的一些创新的方法.

Visual.ly:可视化数据探索平台

- kaichun - TechWeb 新酷网站 RSS阅读
Visual.ly相关图片(图片来源:Techweb.com.cn).   【TechWeb报道】4月12日消息,新酷网站:可视化数据探索平台Visual.ly.   我们生活在数据收集和内容创作的时代. Visual.ly正是这个数据时代当产物,一个全新的可视化信息图形新平台. 信息图形将极大的刺激视觉表现,促进用户间相互学习、讨论.

数据可视化6步法

- - 百度商业用户体验部
在当前互联网,各种数据可视化图表层出不穷,本文尝试对数据可视化的方法进行归纳,整理成6步法. 一般的数据图表都可以拆分成最基本的两类元素: 所描述的事物及这个事物的数值,我们暂且将其分别定义为指标和指标值. 比如一个性别分布中,男性占比30%,女性占比70%,那么指标就是男性、女性,指标值对应为30%、70%.

大数据可视化小结

- - CSDN博客云计算推荐文章
苏州海数信息www.dataonv.com. 对数据可视化的需求正急剧增长. 一部分原因是更多的公司正在寻求通过对大数据分析来获得可视化的业务洞察力. 大数据的可视化个人认为还是以仪表盘为展现的最终载体,当然仪表盘会包含移动端、云端和企业端. 那么,仪表盘中的内容应该包含哪些. 大数据的最终分析结果,其中有一种是对关键指标的计算结果,如:市场模糊占有率,总体情感指数,用户粘度系数等等,其展现内容最简单来说就是一个数字或者百分比,展现形式可以是较为显眼的图片,突出数字的基础上,增加小部分的文字描述;.

Twitter数据挖掘及其可视化

- - 细语呢喃
前阵子有学弟学妹问我毕设做的啥,于是我决定记录一下去年毕设的内容. 主要是基于twitter的内容有:. Twitter数据挖掘平台的设计与实现. 毕设从16年3月开始做,做到5月初,开始写论文,当时写的论文一共有七章,写了一个礼拜,从早到晚- -| 共24834字. ,数据有的从15年11月左右开始抓的.

可视化的数据结构和算法

- greenar - 酷壳 - CoolShell.cn
还记得之前发布过的那个关于可视化排序的文章吗. 在网上又看到了一个旧金山大学David Galles做的各种可视化的数据结构和基本算法的主页,网址在这里,大家可以看看. 我把这个页面的目录列在下面并翻译了一下,大家可以直接点击了. 不知道国内的教育有没有相关的教学课件,至少在我大学的时候是没有的. Queues队列: 数组实现.

数据可视化之美——《纽约时报》的一天

- afanso - 《程序员》杂志官网
文 / Michael Young,Nick Bilton    译 / 祝洪凯,李妹芳. 你是否曾经想过《纽约时报》网站的读者会涵盖什么类型的人. 我们还在想他们倾向于在一天之中的什么时候来访问网站,使用什么工具访问以及他们都来自哪里. 从他们是谁到在什么时候、以什么方式以及为什么等,所有这些问题都在我们的思考范围之内.