浅谈ElasticSearch的嵌套存储模型

标签: elasticsearch 模型 | 发表时间:2017-02-28 11:19 | 作者:
出处:http://www.iteye.com


最近一个半月都在搞SparkStreaming+Hbase+Redis+ES相关的实时流项目开发,其中重度使用了ElasticSearch作为一个核心业务的数据存储,所以这段时间更新文章较少,现在开发基本完事,接下来的会写几篇有关ElastiSearch的使用心得。


大多数时候我们使用es都是用来存储业务比较简单的数据,比如日志log类居多,就算有一些有主外键关联的数据,我们也会提前join好,然后放入es中存储。

的确,扁平化后的数据存入索引,无论是写入,更新,查询都比较简单。但是有一些业务却没法扁平化后存储。比如我们这次的业务数据。由于业务本身比较复杂,先看下数据实体模型。






总共是三层模型,可以看到User(用户)包含多个Quest(题目),每个题目又包含多个Kp(知识点),其中User,Quest,Kp都是一个实体类,可以包含多个属性,按照es的字段类型应该叫做object类型,先说说为什么不能扁平化处理在写入索引,因为一旦扁平化其实只有统计知识点相关的聚合才是正确的,若想统计题目和人的一些聚合指标有些是查不出来的,因为一旦扁平前2级数据会被冗余放大好多倍,导致计算指标会出现问题。常规的count+distinct可以出来,但是一些sum指标就不对了,会多算冗余数据的和,而且没法再减出去,如果想做可能需要多次查询才能搞定,理想情况下,一次查询就能搞定大部分查询或聚合
所以只有嵌套设计才能贴合真实的数据模型,换做关系型数据需要三张表,用mongodb也可以但是查询+聚合就没有es这么强大和高效


三层嵌套的好处就是贴合实际的数据实体模型,但是带来的弊端也非常明显,对深层嵌套数据的删除,修改比较麻烦,虽然也能做到,但是每一层的数据量越大,性能可能就越低,所以嵌套方案,适合存储和查询多级嵌套数据,且更新和删除操作少的业务情况,尽量没有修改和删除。



es的嵌套查询和聚合支持都比较完善,并且支持嵌套反转查询。嵌套数据的添加可以使用script脚本方式来完成,直接将java的bean给转换完为json提交即可。

下面来看下动态mapping+嵌套类型设置,一个模板如下:


{
  "order": 0,
  "template": "work*",
  "settings": {
    "index": {
      "number_of_replicas": "0",
      "number_of_shards": "3"
    }
  },
  "mappings": {
    "_default_": {
      "dynamic_templates": [
        {
          "nested_kps": {
            "mapping": {
              "type": "nested"
            },
            "path_match": "quests.kps"
          }
        },
        {
          "nested_quests": {
            "mapping": {
              "type": "nested"
            },
            "match": "quests"
          }
        },
        {
          "string_fields": {
            "mapping": {
              "index": "not_analyzed",
              "type": "string"
            },
            "match": "*",
            "match_mapping_type": "string"
          }
        },
        {
          "message": {
            "mapping": {
              "index": "analyzed",
              "type": "string"
            },
            "match": "message",
            "match_mapping_type": "string"
          }
        },
        {
          "date_fields": {
            "mapping": {
              "doc_values": true,
              "type": "date"
            },
            "match": "*",
            "match_mapping_type": "date"
          }
        },
        {
          "float_fields": {
            "mapping": {
              "doc_values": true,
              "type": "float"
            },
            "match": "*",
            "match_mapping_type": "float"
          }
        },
        {
          "double_fields": {
            "mapping": {
              "doc_values": true,
              "type": "double"
            },
            "match": "*",
            "match_mapping_type": "double"
          }
        },
        {
          "integer_fields": {
            "mapping": {
              "doc_values": true,
              "type": "integer"
            },
            "match": "*",
            "match_mapping_type": "integer"
          }
        },
        {
          "long_fields": {
            "mapping": {
              "doc_values": true,
              "type": "long"
            },
            "match": "*",
            "match_mapping_type": "long"
          }
        }
      ],
      "_all": {
        "enabled": false
      }
    }
  },
  "aliases": {}
}


嵌套类型的关键词是nested,如果一个类型是nested,就相当于是设置了Java里面的List是一个集合对象list,可以有多个同一种类型的实体类数据,每个数据里面还可以有自己的嵌套类型或其他类型,上面的动态mapping里面数据类型设置各个类型的定义,并且根据path设置了嵌套的动态mapping设置。这样以来就相当于设置了三层嵌套。

到此我们应该能理解嵌套模型的定义和使用场景了,下篇会给出如何插入数据和使用script追加数据。


有什么问题可以扫码关注微信公众号:我是攻城师(woshigcs),在后台留言咨询。
技术债不能欠,健康债更不能欠, 求道之路,与君同行。




已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [elasticsearch 模型] 推荐:

浅谈ElasticSearch的嵌套存储模型

- - ITeye博客
最近一个半月都在搞SparkStreaming+Hbase+Redis+ES相关的实时流项目开发,其中重度使用了ElasticSearch作为一个核心业务的数据存储,所以这段时间更新文章较少,现在开发基本完事,接下来的会写几篇有关ElastiSearch的使用心得. 大多数时候我们使用es都是用来存储业务比较简单的数据,比如日志log类居多,就算有一些有主外键关联的数据,我们也会提前join好,然后放入es中存储.

[译]elasticsearch mapping

- - an74520的专栏
es的mapping设置很关键,mapping设置不到位可能导致索引重建. 请看下面各个类型介绍^_^. 每一个JSON字段可以被映射到一个特定的核心类型. JSON本身已经为我们提供了一些输入,支持 string,  integer/ long,  float/ double,  boolean, and  null..

Elasticsearch as Database - taowen - SegmentFault

- -
【北京上地】滴滴出行基础平台部招聘 Elasticsearch 与 Mysql binlog databus 开发工程师. 内推简历投递给: [email protected]. 推销Elasticsearch. 时间序列数据库的秘密(1)—— 介绍. 时间序列数据库的秘密(2)——索引.

ElasticSearch 2 的节点调优(ElasticSearch性能)

- - 行业应用 - ITeye博客
一个ElasticSearch集群需要多少个节点很难用一种明确的方式回答,但是,我们可以将问题细化成一下几个,以便帮助我们更好的了解,如何去设计ElasticSearch节点的数目:. 打算建立多少索引,支持多少应用. elasticsearch版本: elasticsearch-2.x. 需要回答的问题远不止以上这些,但是第五个问题往往是容易被我们忽视的,因为单个ElasticSearch集群有能力支持多索引,也就能支持多个不同应用的使用.

Elasticsearch:使用 Elasticsearch 进行语义搜索

- - 掘金 后端
在数字时代,搜索引擎在通过浏览互联网上的大量可用信息来检索数据方面发挥着重要作用. 此方法涉及用户在搜索栏中输入特定术语或短语,期望搜索引擎返回与这些确切关键字匹配的结果. 虽然关键字搜索对于简化信息检索非常有价值,但它也有其局限性. 主要缺点之一在于它对词汇匹配的依赖. 关键字搜索将查询中的每个单词视为独立的实体,通常会导致结果可能与用户的意图不完全一致.

elasticsearch的javaAPI之query

- - CSDN博客云计算推荐文章
elasticsearch的javaAPI之query API. the Search API允许执行一个搜索查询,返回一个与查询匹配的结果(hits). 它可以在跨一个或多个index上执行, 或者一个或多个types. 查询可以使用提供的 query Java API 或filter Java API.

Elasticsearch基础教程

- - 开源软件 - ITeye博客
转自:http://blog.csdn.net/cnweike/article/details/33736429.     Elasticsearch有几个核心概念. 从一开始理解这些概念会对整个学习过程有莫大的帮助.     接近实时(NRT).         Elasticsearch是一个接近实时的搜索平台.

ElasticSearch索引优化

- - 行业应用 - ITeye博客
ES索引的过程到相对Lucene的索引过程多了分布式数据的扩展,而这ES主要是用tranlog进行各节点之间的数据平衡. 所以从上我可以通过索引的settings进行第一优化:. 这两个参数第一是到tranlog数据达到多少条进行平衡,默认为5000,而这个过程相对而言是比较浪费时间和资源的. 所以我们可以将这个值调大一些还是设为-1关闭,进而手动进行tranlog平衡.

elasticsearch集群搭建

- - zzm
之前对于CDN的日志处理模型是从 . logstash agent==>>redis==>>logstash index==>>elasticsearch==>>kibana3,对于elasticsearch集群搭建,可以把索引进行分片存储,一个索引可以分成若干个片,分别存储到集群里面,而对于集群里面的负载均衡,副本分配,索引动态均衡(根据节点的增加或者减少)都是elasticsearch自己内部完成的,一有情况就会重新进行分配.

Elasticsearch集群入门

- - 编程语言 - ITeye博客
欢迎来到Elasticsearch的奇妙世界,它是优秀的全文检索和分析引擎. 不管你对Elasticsearch和全文检索有没有经验,都不要紧. 我们希望你可以通过这本书,学习并扩展Elasticsearch的知识. 由于这本书也是为初学者准备的,我们决定先简单介绍一般性的全文检索概念,接着再简要概述Elasticsearch.