用户画像规划流程和方法

标签: 产品设计 1年 初级 用户画像 | 发表时间:2020-10-08 18:11 | 作者:汪仔2296
出处:http://www.woshipm.com

编辑导语:如今在这个大数据时代,“用户画像”这个词经常出现,它跟精准营销挂钩,可以根据一个人的兴趣、地理位置等进行精确的推送,达到良好的营销效果;本文作者分享了关于用户画像规划的流程和方法,我们一起来看一下。

互联网行业飞速的发展,带动行业业务量激增,同时伴随数据量的增加,互联网各行各业慢慢形成头部企业,2/8原则下长尾企业也越来越多;因此,在大数据量和激烈竞争下,如何更好的对产品进行营销,如何制定价格策略,越来越重要。

那么,如何制定准确的营销和价格,就需要我们针对不同人群,不同个体的特点进行精细化推荐,所要本章介绍了如何进行用户画像。

文章结构:

一、什么是用户画像

用户画像就是对用户按照一定的规则进行统计,划分,从而能够指导用户推荐,客户分层运营,达到营销效果。

昨天:手机APP大爆发是随着手机硬件的发展而发展起来的,发展前期大量APP为抢占市场纷纷上线;用户画像只是为了指导产品设计,主要用于产品设计前夕的用户访谈、用户调研的前期工作,而且一般覆盖的人群比较狭隘,精准度差,产品经理设计产品全靠感觉。

今天:行业竞争越来越大,行业产生的数据量也越来越大,各大公司开始建造自己的数据仓库;那么如何应用数据仓库中的数据,如何进行精细化运营,用户画像越来越受到重视。

明天:随着大数据技术的成熟应用,用户画像标签将越来越多,目前互联网行业中比较成功的标签系统是淘宝的千人千面,技术创新必将推动用户画像的精准度。

二、用户画像常用场景

用户画像概况可应用于一下三个场景:

  • 产品设计:开发前期的产品定位设计;
  • 产品营销:指导运营对特定用户进行推送活动信息,推广信息,个性化推荐等。
  • 产品决策:分析用户画像统计对产品的发展现状和发展趋势进行预测,及时调整产品发展路线。

按照用户标签的生产方式可分为:

统计标签:现有的可以直接从数据中提取出来的标签;包括用户自然属性,用户行为统计等信息。

规则标签:自定义规则进行标签建模;根据业务流程提取需要统计的标签。

算法模型标签:根据机器学习等算法进行用户行为预测分类;具有不确定性、开发周期长、成本高,因此系统中此类标签数量较少。

三、用户画像系统搭建流程

1. 数据采集

对用户数据进行采集,数据预处理,数据挖掘和过滤等手段得出期望的数据集。

用户数据一般分为埋点数据和业务数据:

  • 埋点数据:根据用户的行为特征进行埋点,将得到的数据进行处理存储;
  • 业务数据:用户的姓名、年龄、地理位置等自然属性,同时包括用户购买、用户评价、用户评论等隐形数据。

具体采集方法可以使用如下算法模型:

文本挖掘模型(TF-IDF):处理文本类型,提取数据信息。

TF是词频,IDF是逆向文件频率,TF-IDF是词频和逆向文件频率的乘积。

Nij就是词i在j文章中出现的次数,分母就是文章的总词数。

D就是语料库中文件总数,下面分母就是词i出现的文档数,然后取对数。

该算法可以直接调用python库Sklearn进行实现,但是该算法比较单一,不考虑词条在文章中的位置,不能准确描述词的重要程度,一般需要结合其他其他算法或者增加权重改进。

聚类算法:聚类算法较多,如ANN神经网络和贝叶斯等,聚类主要是针对冷启动用户、用户分群营销等目的;具体算法相对复杂,目前算法应用多使用python的各种库如Sklearn,包括一些框架tensorflow、caffe等。

相似度模型:一般使用相似度模型进行辅助用户分群,常用的有逻辑回归、线性回归、余弦相似度、皮尔森相似度等。

具体说下余弦相似度:

实例:

用户1和用户2通过公式计算相似度为0.945406,是不是可以解释为两个用户可以划分为同一类人,进行用户分群(计算过程只是用于解释算法,无其他意义)。

若已有数据仓库,数据采集相对比较轻松,可参考文章“ 每日优鲜如何搭建数据仓库?”。

2. 用户维度分析

用户分析具有多维度,随时间更新的特点,包括用户年纪、学历、兴趣、消费水平等都容易变化。

因此维度信息应该随着用户偏好发生变化,因此,在标签系统中需要有新增标签功能。

3. 维度标签化

用户画像最终的实现应该是对维度进行标签化,常用MECE法则进行标签化,防止标签界限不清晰。

标签需要根据需要进行逐级拆分,例如:

4. 标签映射,接口封装

用户画像数据导入服务器中,为后续推荐系统,营销活动服务;封装成API可以作为数据服务的内容,对其他系统提供数据支持。

5. 用户画像评估

对画像进行评估:

用户覆盖率:用户画像具体能够覆盖到多少用户,有些用户画像可能覆盖总用户的50%或者80%;所以覆盖率是用户画像应用的一个评价,覆盖率越高,对后续精准营销的策略选择越准确。

准确率:模型的准确性,如上所述,使用算法模型导致的用户分群错误或者对用户的购买意向预测错误,将直接影响购买率,影响GMV。

可拓展:用户画像在维度刻画应该是可扩展的。

及时性:如果用户画像服务到实时推荐系统中还需要用户画像的及时。

四、总结

用户画像结合大数据技术使用户刻画更加细致、及时,对日趋竞争激烈的互联网浪潮起到越来越重要应用。

 

本文由@汪仔2296 原创发布于人人都是产品经理,未经许可,禁止转载。

题图来自Unsplash, 基于CC0协议

相关 [用户 画像 规划] 推荐:

用户画像规划流程和方法

- - 人人都是产品经理
编辑导语:如今在这个大数据时代,“用户画像”这个词经常出现,它跟精准营销挂钩,可以根据一个人的兴趣、地理位置等进行精确的推送,达到良好的营销效果;本文作者分享了关于用户画像规划的流程和方法,我们一起来看一下. 互联网行业飞速的发展,带动行业业务量激增,同时伴随数据量的增加,互联网各行各业慢慢形成头部企业,2/8原则下长尾企业也越来越多;因此,在大数据量和激烈竞争下,如何更好的对产品进行营销,如何制定价格策略,越来越重要.

细说 用户画像

- - 神刀安全网
对于互联网从业者,经常会提到一个词——用户画像. 作为一名刚主要做用户画像DMP的数据PM,工作中总是会被需求方问到——. 我要查看XXX的用户画像 或是 能否能够XXXX类用户的画像. 抑或是有别的产品会问到:你们是怎么做用户画像的. 然而在沟通的过程中,我发现,不同的人对用户画像的理解差异还是非常大的.

用户画像TGI指标

- - 标点符
对于TGI指数,百科是这样解释的——TGI指数,全称Target Group Index,可以反映目标群体在特定研究范围内强势或者弱势. TGI指数计算公式 = 目标群体中具有某一特征的群体所占比例 / 总体中具有相同特征的群体所占比例 * 标准数100. 举个例子,假设一家外语学校里面有家烧烤店,每天晚上男生和女生顾客都是50%,你觉得男生还是女生更倾向于光顾这个烧烤店呢.

创建定性用户画像

- - 腾讯CDC
  在产品研发过程中,确定明确的目标用户至关重要. 不同类型的用户往往有不同甚至相冲突的需求,我们不可能做出一个满足所有用户的产品.   为了让团队成员在研发过程中能够抛开个人喜好,将焦点关注在目标用户的动机和行为上,Alan Cooper提出了Persona这一概念. “赢在用户”这本书将其翻译为“人物角色”,在腾讯我们习惯了使用“用户画像”这个术语.

族群歧视与用户画像

- - IT瘾-tuicool
题图是这两天的新闻人物美籍越南人 Dr. 美国朋友觉得奇怪,为什么要说他是越南人. 另一位 Asian,估计是位澳大利亚籍香港人,发了一条推特说——Dr. Dao 当时反抗的暴力其实是合法的强制执法. 第三位 Asian,相信是位中国籍大陆知友,读了这条推特很愤慨,挥键写就高赞爆款推送《比打人更可怕的是国人的落井下石》.

大数据下的用户画像

- - 人月神话的BLOG
简单点来说用户画像,即是 根据用户的静态基本属性和动态行为数据来构建一个可标签化的用户模型. 静态属性:个人基本信息(地域,年龄,性别,婚姻),家庭信息,工作信息等. 动态行为:购买行为,点击行为,浏览,评论,营销活动参与行为,退换货行为,支付行为等. 为何要进行用户画像,核心还是后续的针对性营销,当我们组织一次针对性营销的时候,首先要确定的就是营销的用户群体,那么就要从用户标签中精确定位这个群体.

用户画像从入门到挖坑

- - leejun2005的个人页面
用户画像承载了两个业务目标:一是如何准确的了解现有用户;二是如何在茫茫人海中通过广告营销获取类似画像特征的新用户. 比如在了解用户的基础上明确产品定位,“投其所好”;获取一个新用户/新订单;售前的精准营销、售中的个性化推荐匹配,以及售后的增值服务等. 1.2 用户流量的三大终极问题:认知用户. 现存客户 (Existing Customer) - 我的现存客户是怎么样,喜欢什么,什么消费习惯,哪些客户最值钱等等.

数据驱动与用户画像

- -
最近不少客户提出,希望与神策数据共同建设“用户画像”以驱动产品智能,但什么才是用户画像呢. 我们通过这篇文章,介绍我们理解的两种用户画像(User Persona 和 User Profile),以及如何构建用户画像(User Profile)的标签体系并驱动产品智能. 第一种用户画像(User Persona)是产品设计、运营人员从用户群体中抽象出来的典型用户:.

你真的懂用户画像吗?

- -
在移动互联网时代,精细化运营成为企业重要的竞争力,此时,“用户画像”的概念也应运而生. 用户画像是指,在大数据时代,我们通过对海量数字信息进行清洗、聚类、分析,从而将数据抽象成标签,利用这些标签将用户形象具体化,从而为用户提供有针对性的服务. 在下文中,我们将以个推用户画像产品为例,为你详解“用户画像”的技术特点和使用价值.

浅谈用户画像的系统化

- -
|0x00 如何理解用户画像. 最近跟朋友聊天,谈起了35岁危机,我的观点是:35岁没什么大不了的,我多学点金融知识,以后转行做金融去;朋友的观点是,转行可不是说说就行,不是说你了解一个行业,就可以去工作的,你要深入理解背后的商业逻辑. 随后,举了一个例子:“什么是用户画像,用户画像如何应用. 这个问题,对于做数据研发的我来说,简直不要太简单.