基于Python的开源人脸识别库:离线识别率高达99.38% | 机器之心

标签: | 发表时间:2018-09-30 13:44 | 作者:
出处:https://www.jiqizhixin.com

仅用 Python 和命令行就可以实现人脸识别的库开源了。该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%。

该项目是要构建一款免费、开源、实时、离线的网络 app,支持组织者使用人脸识别技术或二维码识别所有受邀人员。

有了世界上最简单的人脸识别库,使用 Python 或命令行,即可识别和控制人脸。

该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%。

这也提供了一个简单的 face_recognition 命令行工具,你可以打开命令行中任意图像文件夹,进行人脸识别!

项目地址: https://github.com/ageitgey/face_recognition#face-recognition

特征

找出图片中的人脸

找出下面图片中所有的人脸:


      importface_recognition
image = face_recognition.load_image_file("your_file.jpg")
face_locations = face_recognition.face_locations(image)

找到并且控制图像中的脸部特征

找到并勾勒出每个人的眼睛、鼻子、嘴和下巴。


      importface_recognition
image = face_recognition.load_image_file("your_file.jpg")
face_landmarks_list = face_recognition.face_landmarks(image)

找出脸部特征对很多重要的事情都非常有用。但是你也可以用它来做一些「蠢事」,比如数字化妆(美图):


识别图片中的人脸

识别每张图片中的人物。


      importface_recognition
known_image = face_recognition.load_image_file("biden.jpg")
unknown_image = face_recognition.load_image_file("unknown.jpg")

biden_encoding = face_recognition.face_encodings(known_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]

results = face_recognition.compare_faces([biden_encoding], unknown_encoding)

你甚至可以使用该库和其他的 Python 库执行实时人脸识别:


此处可查看代码示例: https://github.com/ageitgey/face_recognition/blob/master/examples/facerec_from_webcam_faster.py

安装

要求:

使用pin3从pypi安装这一模块:

      pip3 install face_recognition

重要提示:pip 尝试编译 dlib 依赖时很可能会遇到一些问题。如果遇到问题,前往该地址( https://gist.github.com/ageitgey/629d75c1baac34dfa5ca2a1928a7aeaf)从来源(而不是 pip)中安装 dlib,从而修复该错误。

手动安装 dlib 后,再次运行 pip3 install face_recognition,完成安装。

如果安装方面还有问题,你还可以试试预配置的 VM( https://medium.com/@ageitgey/try-deep-learning-in-python-now-with-a-fully-pre-configured-vm-1d97d4c3e9b

用途

命令行界面

安装 face_recognition 时,你会得到一个名为 face_recognition 的简单命令行程序,该程序可用于识别照片或装满照片的文件夹中的人脸。

首先,你需要提供一个包含图片的文件夹,且每张图片中的每个人你都认识。每个人有一个图像文件,文件名就是图片中人物的名字:


然后,你需要再建一个文件夹,包含你想要识别的图像文件:


之后,你仅需要在已知人物文件夹和未知人物文件夹(或单个图像)中运行 face_recognition 命令,该程序会告诉你每个图像中的人物是谁:

      $ face_recognition ./pictures_of_people_i_know/ ./unknown_pictures//unknown_pictures/unknown.jpg,Barack Obama
/face_recognition_test/unknown_pictures/unknown.jpg,unknown_person

每张人脸的输出结果只有一行,由文件名和找到的人物名组成,中间用逗号分隔。

 unknown_person 是未与已知人物文件夹中任何照片相匹配的人脸。

如果你只想知道每张照片中的人物姓名,不在意文件名,那么你可以采用以下做法:

      $ face_recognition ./pictures_of_people_i_know/ ./unknown_pictures/ | cut -d','-f2

Barack Obama
unknown_person

如果你的电脑配有多核 CPU,你就可以同时执行多个人脸识别任务。例如,如果你的系统有 4 个 CPU 核,你可以同时使用这 4 个 CPU 核,那么同样时间内处理的图像数量是原来的四倍。

如果你使用 Python 3.4 或更新的版本,传入--cpus <number_of_cpu_cores_to_use>参数:

      $ face_recognition -cpus4./pictures_of_people_i_know/ ./unknown_pictures/

你还可以传入--cpus -1,来使用系统中所有的 CPU 核。

Python 模块

使用 face_recognition 模块,几行代码轻松控制人脸,so easy!

API 文件地址 :https://face-recognition.readthedocs.io 

自动定位图像中人物的脸部特征

      importface_recognition

image = face_recognition.load_image_file("my_picture.jpg")
face_locations = face_recognition.face_locations(image)

# face_locations is now an array listing the co-ordinatesofeach face!

图像人脸识别

      importface_recognition

picture_of_me = face_recognition.load_image_file("me.jpg")
my_face_encoding = face_recognition.face_encodings(picture_of_me)[0]

# my_face_encoding now contains a universal'encoding'ofmy facial features that can be compared to any other pictureofa face!

unknown_picture = face_recognition.load_image_file("unknown.jpg")
unknown_face_encoding = face_recognition.face_encodings(unknown_picture)[0]

# Now we can see the two face encodings areofthe same personwith`compare_faces`!

results = face_recognition.compare_faces([my_face_encoding], unknown_face_encoding)ifresults[0] == True:
    print("It's a picture of me!")else:
    print("It's not a picture of me!")

注意事项

该人脸识别模型基于成年人照片训练,因此对儿童照片的识别效果不好。该模型默认比较阈值是 0.6,容易混淆儿童的面部。

将该模型配置到云主机(Heroku、AWS 等)

face_recognition 赖以存在的 dlib 是用 C++语言写的,因此将该内置该模型的 app 配置到 Heroku 或 AWS 等云主机提供商就很复杂。在该 repo 中有一个 Dockerfile 示例,展示如何在 Docker 容器中运行内置 face_recognition 模型的 app(详见该网址:https://www.docker.com/)。参考该示例,您能够将该模型配置到任何支持 Docker 图像的服务。

常见问题

问题:使用 face_recognition 或运行样本时,出现 Illegal instruction (core dumped)。

解决方案:dlib 需要在 SSE4 或 AVX 支持下编译,但是你的 CPU 太旧,无法支持编译。你需要根据此处( https://github.com/ageitgey/face_recognition/issues/11#issuecomment-287398611)所示修改代码,然后对 dilb 进行重新编译。

问题:运行摄像头样本时,出现 RuntimeError: Unsupported image type, must be 8bit gray or RGB image.

解决方案:你的摄像头可能并未在 OpenCV 上正确设置。点击此处( https://github.com/ageitgey/face_recognition/issues/21#issuecomment-287779524)了解更多。

问题:运行 pip2 install face_recognition 时出现 MemoryError。

解决方案:face_recognition_models 文件太大,不适合你可用的 pip 缓存内存。试一下 pip2 --no-cache-dir install face_recognition,解决该问题。

问题:AttributeError: 'module' object has no attribute 'face_recognition_model_v1'

解决方案:你安装的 dlib 版本过旧,需要 19.4 或者更新的版本。请升级 dlib 版本。

问题:TypeError: imread() got an unexpected keyword argument 'mode'

解决方案:你安装的 scipy 版本过旧,需要 0.17 或者更新的版本。请升级 scipy 版本。

相关 [python 开源 人脸识别] 推荐:

基于Python的开源人脸识别库:离线识别率高达99.38% | 机器之心

- -
仅用 Python 和命令行就可以实现人脸识别的库开源了. 该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%. 该项目是要构建一款免费、开源、实时、离线的网络 app,支持组织者使用人脸识别技术或二维码识别所有受邀人员.

用python库face_recognition进行人脸识别

- - 开源软件 - ITeye博客
期间在安装依赖包dlib时遇到问题,解决见:  http://kissmett.iteye.com/blog/2409857. 3.通过摄像头实时在获取的帧上进行人脸识别(较卡顿). basefacefilespath ="images"#faces文件夹中放待识别任务正面图,文件名为人名,将显示于结果中 baseface_titles=[] #图片名字列表 baseface_face_encodings=[] #识别所需人脸编码结构集 #读取人脸资源 for fn in os.listdir(basefacefilespath): #fn 人脸文件名.

利用python打造自己的人脸识别系统 - 简书

- -
正像著名物理学家,理查德•费曼说的一样,如果要真正理解一个东西,我们必须要能够把它创造出来. 动手去做,永远比被动地听有用,我就是这么想并这么实践的. 本文介绍了我自己动手做的一种基于卷积神经网络的人脸识别系统,以python为语言基础,综合应用了keras、opencv、numpy、sklearn等多种技术.

Python 3 利用 Dlib 实现摄像头实时人脸识别 - coneypo - 博客园

- -
  利用 Python 开发,借助 Dlib 库捕获摄像头中的人脸,提取人脸特征,通过计算特征值之间的欧氏距离,来和预存的人脸特征进行对比,判断是否匹配,达到人脸识别的目的;.   可以从摄像头中抠取人脸图片存储到本地,然后提取构建预设人脸特征;.   根据抠取的 / 已有的同一个人多张人脸图片提取 128D 特征值,然后计算该人的 128D 特征均值;.

迄今最全人脸识别开源 - qq_34654240的博客 - CSDN博客

- -
人脸识别是目前深度学习领域应用最为广泛的领域之一,各大框架都有不错的开源项目,可以在短时间内实现刷榜. Demystifying Face Recognition,由浅入深实验了很多方法. 谷歌人脸识别系统FaceNet解析. 如何走近深度学习人脸识别:. https://github.com/moli232777144/mobilefacenet-mxnet:轻量级版本99.5%.

开源Python UI框架:Kivy

- xin - 秀码趣 - ShowMuch.com
Kivy是一个可用以快速创建新颖用户界面应用的开源Python库,比如可以用它来创建多点触摸的应用程序,它具备跨平台特性,目前发行有Windows、MacOS、Linux以及Android版本. 作为一个开源框架,Kivy具备以下特性:A.百分百免费使用;B.基于 LGPL3协议 开源,对商业化应用友好;C.跨平台,支持Windows、MacOS、Linux以及Android;D.允许在不同的平台上运行同一套代码;E.稳定以及有完善的API文档;F.通过OpenGL ES 2.0对硬件进行加速;G.自然支持大部分的输入协议或者输入设备;H.基于Python的简单API……等等.

【人脸识别】初识人脸识别

- - CSDN博客推荐文章
由于导师给我们布置了每周阅读两篇大牛论文,并写ppt的任务. 反正ppt都写了,所以我想干脆直接把ppt的内容再整理一下写成博客. 近期的阅读论文都是 人脸识别相关的主题. 如果你研究过人脸识别,或者对这方面有兴趣,那么你一定听说过Paul Viola. 他可以算得上是人脸检测识别的始祖,他的一篇大作《RobustReal-time Object Detection》可以说是人脸识别领域最重要的一篇论文.

开源Python网络爬虫框架Scrapy

- - 互联网实践
所谓网络爬虫,就是一个在网上到处或定向抓取数据的程序,当然,这种说法不够专业,更专业的描述就是,抓取特定网站网页的HTML数据. 不过由于一个网站的网页很多,而我们又不可能事先知道所有网页的URL地址,所以,如何保证我们抓取到了网站的所有HTML页面就是一个有待考究的问题了. 一般的方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样.

【转载】用HTML5进行人脸识别

- - HTML5研究小组
其中的一个特性是getUserMedia( W3C规范 ). 它是一个JavaScript API,可以让你访问(需要权限)用户的网络摄像头和麦克风. 今天发现一篇文章写的很有趣,叫你如何使用HTML5进行人脸识别. 在网页内进行人脸识别,很好很强大. “现代Web”不断发展出不少有趣的API,但你并不会在大多数项目中使用到所有的内容.

自动人脸识别基本原理

- - IT技术博客大学习
标签:   https://b2museum.   人脸识别经过近 40 年的发展,取得了很大的发展,涌现出了大量的识别算法. 这些算法的涉及面非常广泛,包括模式识别、图像处理、计算机视觉、人工智能、统计学习、神经网络、小波分析、子空间理论和流形学习等众多学科. 所以很难用一个统一的标准对这些算法进行分类.