迄今最全人脸识别开源 - qq_34654240的博客 - CSDN博客

标签: | 发表时间:2018-11-03 17:23 | 作者:
出处:https://blog.csdn.net

人脸识别是目前深度学习领域应用最为广泛的领域之一,各大框架都有不错的开源项目,可以在短时间内实现刷榜。

首推 Demystifying Face Recognition,由浅入深实验了很多方法

人脸识别算法演化史

谷歌人脸识别系统FaceNet解析

模型评估

人脸识别系列

从0开始,一起玩人脸识别

深度挖坑系列

如何走近深度学习人脸识别: https://github.com/Joker316701882/Additive-Margin-Softmax

caffe

https://github.com/wy1iu/sphereface:lfw 99.30% with A-softmax loss 中文理解

https://github.com/happynear/NormFace:99.21%

https://github.com/ydwen/caffe-face:~99% centerloss,ECCV2016

https://github.com/AlfredXiangWu/face_verification_experiment98.80% with CASIA,Light-CNN

mxnet

https://github.com/deepinsight/insightface:lfw 99.83%

https://github.com/moli232777144/mobilefacenet-mxnet:轻量级版本99.5%

https://github.com/qidiso/mobilefacenet-V2:99.66%

tensorflow

https://github.com/davidsandberg/facenet:lfw 99.65%

多GPU版本: https://github.com/wangruichens/facenet_multigpu

https://github.com/auroua/InsightFace_TF:99.68%

https://github.com/xsr-ai/MobileFaceNet_TF

人脸对齐

https://github.com/CamlinZ/face_alignment一种人脸68特征点检测的深度学习方法

https://github.com/zeusees/HyperLandmark106点标注,含android端

https://github.com/tensor-yu/cascaded_mobilenet-v2: 级联MobileNet-V2进行人脸关键点(5点)检测,单模型仅 956 KB,GTX1080上运行为6ms左右

https://github.com/goodluckcwl/Face-alignment-mobilenet-v2

Loss Function

人脸识别的LOSS

https://github.com/KaleidoZhouYN/Loss-Functions

https://github.com/KaleidoZhouYN/Sphereface-Ms-celeb-1M:讨论对齐的影响

商业实践

InsightFace - 使用篇, 如何一键刷分LFW 99.80%, MegaFace 98%

从理论到实践, 用insightface构建人证识别系统

人脸识别最新进展以及工业级大规模人脸识别实践探讨

如何进行上亿类的人脸识别

facenet 代码阅读笔记:如何训练基于triplet-loss的模型

https://github.com/seetaface/SeetaFaceEngine:山世光老师的开源库,不过有点过时了

A-Softmax的总结及与L-Softmax的对比——SphereFace

A Discriminative Feature Learning Approach for Deep Face Recognition 原理及在caffe实验复现

android

https://github.com/GRAYKEY/mobilefacenet_android

https://github.com/zhanglaplace/MobileFaceNetAmsoftmax实现

https://github.com/KaleidoZhouYN/mobilefacenet-caffe

https://github.com/moli232777144/small_model_face_recognition:Light CNN for ncnn

https://github.com/mohanson/FaceDetectionServer:go服务器人脸识别服务

https://github.com/yanmeizhao/Sara/tree/master/sample_mobile_track_106:商汤106点人脸跟踪

数据集

CASIA-WebFace:

对齐后版本(112*112)

MS1M

对齐后版本(112*112)

VGGFace2

对齐后版本(112*112)

格灵深瞳数据集: All, Asia

IMDb-Face

--------------------- 本文来自 迷若烟雨 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/minstyrain/article/details/82292278?utm_source=copy

相关 [人脸识别 开源 qq] 推荐:

迄今最全人脸识别开源 - qq_34654240的博客 - CSDN博客

- -
人脸识别是目前深度学习领域应用最为广泛的领域之一,各大框架都有不错的开源项目,可以在短时间内实现刷榜. Demystifying Face Recognition,由浅入深实验了很多方法. 谷歌人脸识别系统FaceNet解析. 如何走近深度学习人脸识别:. https://github.com/moli232777144/mobilefacenet-mxnet:轻量级版本99.5%.

【人脸识别】初识人脸识别

- - CSDN博客推荐文章
由于导师给我们布置了每周阅读两篇大牛论文,并写ppt的任务. 反正ppt都写了,所以我想干脆直接把ppt的内容再整理一下写成博客. 近期的阅读论文都是 人脸识别相关的主题. 如果你研究过人脸识别,或者对这方面有兴趣,那么你一定听说过Paul Viola. 他可以算得上是人脸检测识别的始祖,他的一篇大作《RobustReal-time Object Detection》可以说是人脸识别领域最重要的一篇论文.

基于Python的开源人脸识别库:离线识别率高达99.38% | 机器之心

- -
仅用 Python 和命令行就可以实现人脸识别的库开源了. 该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%. 该项目是要构建一款免费、开源、实时、离线的网络 app,支持组织者使用人脸识别技术或二维码识别所有受邀人员.

【转载】用HTML5进行人脸识别

- - HTML5研究小组
其中的一个特性是getUserMedia( W3C规范 ). 它是一个JavaScript API,可以让你访问(需要权限)用户的网络摄像头和麦克风. 今天发现一篇文章写的很有趣,叫你如何使用HTML5进行人脸识别. 在网页内进行人脸识别,很好很强大. “现代Web”不断发展出不少有趣的API,但你并不会在大多数项目中使用到所有的内容.

自动人脸识别基本原理

- - IT技术博客大学习
标签:   https://b2museum.   人脸识别经过近 40 年的发展,取得了很大的发展,涌现出了大量的识别算法. 这些算法的涉及面非常广泛,包括模式识别、图像处理、计算机视觉、人工智能、统计学习、神经网络、小波分析、子空间理论和流形学习等众多学科. 所以很难用一个统一的标准对这些算法进行分类.

用python库face_recognition进行人脸识别

- - 开源软件 - ITeye博客
期间在安装依赖包dlib时遇到问题,解决见:  http://kissmett.iteye.com/blog/2409857. 3.通过摄像头实时在获取的帧上进行人脸识别(较卡顿). basefacefilespath ="images"#faces文件夹中放待识别任务正面图,文件名为人名,将显示于结果中 baseface_titles=[] #图片名字列表 baseface_face_encodings=[] #识别所需人脸编码结构集 #读取人脸资源 for fn in os.listdir(basefacefilespath): #fn 人脸文件名.

人脸识别发展史与算法综述

- king - CSDN博客推荐文章
      在我们生存的这个地球上,居住着近 65 亿人. 每个人的面孔都由额头、眉毛、眼睛、鼻子、嘴巴、双颊等少数几个区域组合而成,它们之间的大体位置关系也是固定的,并且每张脸的大小不过七八寸见方. 然而,它们居然就形成了那么复杂的模式,即使是面容极其相似的双胞胎,其家人通常也能够非常容易地根据他们面孔上的细微差异将他们区分开来.

温习传闻:Facebook收购人脸识别创业公司Face.com

- - 业界
导读:准备好再听一个后IPO 时代的Facebook 收购的传闻吗. 事实上,Face.com 传言将成为Facebook 的收购目标由来已久. 虽然我们还不能确定这次收购能否成真,但本文给出的一些分析还是饶意义的. 据以色列商业报纸Calcalist披露,社交网络巨人将要收购人脸识别科技公司Face.com.

人脸识别算法终于超过了人类本身

- - 博客 - 伯乐在线
计算机科学家已经开发出一种新的人脸识别算法,在识别人脸的能力上比人类本身更加强大. 我们每个人都有过认不出某个自己曾经认识的人的经历,在不同的姿势、光照和表情下,这其实是一件比较困难的事情. 计算机识别系统同样存在这些问题. 事实上,尽管全世界的计算机科学家努力了这么多年,还是没有任何一种计算机识别系统在识别人脸方面能够像人类一样强大.

利用python打造自己的人脸识别系统 - 简书

- -
正像著名物理学家,理查德•费曼说的一样,如果要真正理解一个东西,我们必须要能够把它创造出来. 动手去做,永远比被动地听有用,我就是这么想并这么实践的. 本文介绍了我自己动手做的一种基于卷积神经网络的人脸识别系统,以python为语言基础,综合应用了keras、opencv、numpy、sklearn等多种技术.