什么是直线?

标签: Interesting Maths Magical Physics 直线 相对论 逻辑学 | 发表时间:2011-03-30 23:09 | 作者:Eagle Fantasy Kymair
出处:http://www.eaglefantasy.com

什么是直线?或者更加准确的问法是如何定义直线?不知道你有没有思考过这个问题。尽管我们实际生活中都有对直线概念的直观理解,但是考虑到后来非欧几何的问世,我们理应对直线有一个更深刻的认识。

欧几里得的几何原本上是这么定义直线的:“直线是它上面的点一样地平放着的线”,其中线的定义是“线只有长度而没有宽度”。显然在逻辑上这样的定义是极其不严格的,因为什么叫做“一样的平放着”只是一个日常生活中的直观概念。这也就是说欧几里得的几何原本相当于并没有对直线给出定义,尽管直线是几何学最基本的基本概念之一。

可能很多人会认为直线被定义成“两点间最短的线”(在这里就不去区分线段和直线了),然后就觉得在逻辑上就已经定义清楚了。但是这里还有一个问题,那就是什么叫做短?要有长短的概念就要先有距离的概念,而仅仅在几何学内考虑这个问题的话,要丈量距离就必须先有尺,而尺的形状又是直的,因此距离的概念其实是建立在直线的概念之上的。所以如果只考虑几何学那么用距离定义直线就成了循环定义了。

所以在数学上,我们就不能单从几何的角度去定义距离了。为了定义距离,我们需要在空间的每一个无穷小的区域上建立一个笛卡尔坐标系,在每一个小的笛卡尔坐标系内部可以通过普通的解析几何的方法定义出距离,然后在整个路径上对每一个小段上的距离进行叠加,从而定义出两点间连线的距离。之所以能在无穷小区域上建立笛卡尔坐标系,是因为一条曲线在无穷小区域上,我们可以把它近似为一小段直线(这个直线就是我们通常直观认识的直线),这个思想其实在最基础的微积分里面就已经有了。(如果一个空间奇异到在无穷小区域上无法建立笛卡尔坐标系,那么一般我们就不去研究它了。)至于为什么不能直接在大区域上直接建立笛卡尔坐标系来定义距离,原因很简单,坐标轴要画成直线啊,在没有直线概念的时候又哪里来的坐标轴呢...一个能够帮助理解的简单例子是在球面上定义最短线,如果直接建立笛卡尔坐标,其中的坐标轴就用我们直观感受的那种直线的话,那么最短线是必须脱离球面而经过球面之外的空间的。但是在球的表面的每一个无穷小区域上建立微小笛卡尔坐标系,就可以很好的沿着球表面定义出一条最短线。

至此,我们基本上可以把直线就定义成两点间距离最短的线了。但是,一定要知道一点,如此定义并没有定义出唯一一种直线。显然在一个球面上定义出的最短线,在我们看来其实是圆弧;在马鞍面上画出的最短线,在我们看来也是弯弯曲曲的线...他们都属于非欧几何。庞加莱圆盘模型(参见这篇文章)就是非欧几何的一种,按照那里定义的距离,圆盘模型内的直线在我们看来就成了圆弧了。

那么怎么定义才能保证刚才定义出来的直线就是我们通常直观上的直线呢?其实很简单,只要再加上一个公理,即传说中的欧几里得第五公设就可以实现:同一平面内一条线段和另外两条线段相交,若在某一侧的两个内角的和小于两直角,则这两线段经充分延长后在这一侧相交。非欧几何正是做出了与第五公设相反的假设而得名的,给出不同的公理,就会得出各种各样的非欧几何。

至此,我们终于可以引入Hilbert大神对直线的理解了:点和直线不可定义,真正需要的是点和直线之间的关系!而对于点和直线之间的最基本关系,Hilbert用公理来确定。“几何学就是给直线一个定义”,只要给出一个直线的定义,就有一套几何学!(这里说的给直线一个定义,意思就是给出一个与现有数学体系无矛盾的描述直线和点之间关系的公理)。而许多不同的几何学在数学上都是正确的,因为它们都被证明是与现有数学体系没有矛盾的。

以上都是数学上对直线定义的讨论。但是现实世界中,我们总得给出对直线的唯一一种定义,然后我才能说从宿舍到食堂到底有多远,以及天文里面一颗恒星距离我们到底有多远。那到底哪一种几何学是“”的呢?什么是现实世界中的客观的直线呢?

通过上面的讨论我们知道了,对于直线的定义其实是随意的。但是基于一些的物理上的信仰,我们仍然对现实中直线的定义作出几条限制:1.不能依赖于主观参考系;2.该定义对于长距离一定也要有效。

现代物理学认为自然界中只有4种相互作用力,其中只有电磁力和引力是长程作用力,于是对应着只有光子和引力子满足上述两条要求(在量子场论中,光子是传递电磁力的粒子,引力子是传递引力的粒子)。鉴于现在引力子仍然没有被观测到,因此我们只剩下了唯一一种选择:定义直线为光子走过的路径!于是相对应的,现实世界也就只有唯一一种几何学了。(将来很有可能观测到引力子,因此在未来很有可能把直线定义为引力子走过的路径...当然引力子的性质和光子是不同的,于是这两种直线的定义就是不同的,于是将来就会有两种不同的真实几何学。这两种不同的几何学必须要统一起来,可见理论物理学的核心问题之一——统一引力和其他三种作用力是多么重要!)

有意思的是,天文学的观测表明,光经过大质量物体时会发生偏折,也就是说我们真实的宇宙中三角形的内角和并不等于180°!(这正是广义相对论的预言)。。。于是,非欧几何不仅仅在逻辑上是存在的,它更是真实世界的几何学!到头来我们才发现,原来我们一直以为很显然的初中学的欧几里得几何学,充其量只是数学家头脑中凭空构造出来的玩具而已。。。

最后再补充一点,鉴于在物理上我们定义直线为光走过的路径,而在小尺度上光子因为量子效应不再具有很好的粒子性,不再具有通常意义上的轨迹,因此,在小尺度上(小到量子效应很明显),几何学根本就是不存在的!这也就是为什么量子力学中就再也没有轨迹这种几何学概念了。

至此,总算是把直线的定义给说清楚了...

//本文基本观点来自北京大学数学科学学院范后宏教授“古今数学思想”课。

//原载于果壳网

我猜您也喜欢:
用逻辑学规范物理学(二)
用逻辑学规范物理学(一)
狭义相对论重要公式备忘
庞加莱的几何学
用逻辑学规范物理学(三)
无觅

相关 [直线] 推荐:

什么是直线?

- Kymair - 宇宙的心弦
或者更加准确的问法是如何定义直线. 尽管我们实际生活中都有对直线概念的直观理解,但是考虑到后来非欧几何的问世,我们理应对直线有一个更深刻的认识. 欧几里得的几何原本上是这么定义直线的:“直线是它上面的点一样地平放着的线”,其中线的定义是“线只有长度而没有宽度”. 显然在逻辑上这样的定义是极其不严格的,因为什么叫做“一样的平放着”只是一个日常生活中的直观概念.

我们的路,像直线

- firxiao - 科学松鼠会
原作:http://cowbirdsinlove.com/1098.

IMO2011趣题:总存在一条将会遍历所有点的直线

- Ge yong - Matrix67: My Blog
    下面这个精彩的问题来自于刚刚结束的 IMO 2011 中的第 2 题:.     设 S 是平面上包含至少两个点的一个有限点集,其中没有三点在同一条直线上. 所谓一个“风车”是指这样一个过程:从经过 S 中单独一点 P 的一条直线 l 开始,以 P 为旋转中心顺时针旋转,直至首次遇到 S 中的另一点,记为点 Q.

你不知道的Node.js性能优化,读了之后水平直线上升

- - SegmentFault 最新的文章
本文由云+社区发表 “当我第一次知道要这篇文章的时候,其实我是拒绝的,因为我觉得,你不能叫我写马上就写,我要有干货才行,写一些老生常谈的然后加上好多特技,那个 Node.js 性能啊好像 Duang~ 的一下就上去了,那读者一定会骂我,Node.js 根本没有这样搞性能优化的,都是假的. ” ------ 斯塔克·成龙·王.